冯萧飞, 李彬, 苏盛, 周义博, 钟佩军, 邓乐, 曾祥君. 基于复数多元回归的低压用户接线错误漏电定位[J]. 中国电机工程学报, 2025, 45(9): 3472-3483. DOI: 10.13334/j.0258-8013.pcsee.232320
引用本文: 冯萧飞, 李彬, 苏盛, 周义博, 钟佩军, 邓乐, 曾祥君. 基于复数多元回归的低压用户接线错误漏电定位[J]. 中国电机工程学报, 2025, 45(9): 3472-3483. DOI: 10.13334/j.0258-8013.pcsee.232320
FENG Xiaofei, LI Bin, SU Sheng, ZHOU Yibo, ZHONG Peijun, DENG Le, ZENG Xiangjun. Location of Wiring Fault Leakage for Low-voltage Users Based on Complex Multiple Regression[J]. Proceedings of the CSEE, 2025, 45(9): 3472-3483. DOI: 10.13334/j.0258-8013.pcsee.232320
Citation: FENG Xiaofei, LI Bin, SU Sheng, ZHOU Yibo, ZHONG Peijun, DENG Le, ZENG Xiangjun. Location of Wiring Fault Leakage for Low-voltage Users Based on Complex Multiple Regression[J]. Proceedings of the CSEE, 2025, 45(9): 3472-3483. DOI: 10.13334/j.0258-8013.pcsee.232320

基于复数多元回归的低压用户接线错误漏电定位

Location of Wiring Fault Leakage for Low-voltage Users Based on Complex Multiple Regression

  • 摘要: 低压配电网零线、地线接线错误漏电故障现象多发,是台区漏保难以投运的重要原因。漏电故障溯源依赖于保护装置跳闸后区域性断电及运维人员经验水平,范围模糊且故障排查效率低下。基于台区电流相量合成特性,分析目前接线错误故障线性回归识别方法的不足;利用台区智能电表提供的多源电气量数据并结合物理约束,在复数域内构建接线错误漏电故障多元回归模型,采用原始-对偶内点法迭代计算各用户负荷电流关于台区剩余电流的最优复权重系数,准确识别接线错误异常用户;进一步与幅值多元回归识别方法进行对比实验,结果表明:所提方法在多种故障场景下识别可靠性均显著优于幅值多元回归,且在多用户故障的复杂场景下依然能够有效识别异常用户。

     

    Abstract: The frequent occurrence of leakage faults due to incorrect wiring of neutral and ground wires in low-voltage distribution networks is a major reason for the difficulty in deploying leakage protection in the distribution area. The tracing of leakage faults relies on regional power outages following the tripping of protective devices and the experience level of maintenance personnel, resulting in an ambiguous scope and low efficiency in fault troubleshooting. Based on the synthetic characteristics of current phasors in the distribution area, the shortcomings of the linear regression identification method for wiring faults are analyzed. Utilizing the multi-source electrical data provided by the smart electric meter in the distribution area and combining with physical constraints, a multivariate regression model for wiring faults in the complex domain is constructed. The primal-dual interior point method is used to iteratively calculate the optimal complex correlation coefficient of each user's load current with respect to the residual current in the distribution area, which accurately locates and identifies abnormal users with wiring faults. Further comparison experiments with the amplitude multivariate regression identification method show that the proposed method significantly outperforms the amplitude multivariate regression in terms of identification reliability under various fault scenarios, and can still effectively distinguish abnormal users in complex fault scenarios involving wiring faults of multiple users.

     

/

返回文章
返回