徐玉珍, 邹中华, 刘宇龙, 曾梓洋, 文云, 金涛. 基于多尺度卷积神经网络和双注意力机制的V2G充电桩开关管开路故障信息融合诊断[J]. 中国电机工程学报, 2025, 45(8): 2992-3002. DOI: 10.13334/j.0258-8013.pcsee.232309
引用本文: 徐玉珍, 邹中华, 刘宇龙, 曾梓洋, 文云, 金涛. 基于多尺度卷积神经网络和双注意力机制的V2G充电桩开关管开路故障信息融合诊断[J]. 中国电机工程学报, 2025, 45(8): 2992-3002. DOI: 10.13334/j.0258-8013.pcsee.232309
XU Yuzhen, ZOU Zhonghua, LIU Yulong, ZENG Ziyang, WEN Yun, JIN Tao. Information Fusion Diagnosis of Switching Tube Open-circuit Fault in V2G Charging Piles Based on Multi-scale Convolutional Neural Network and Dual-attention Mechanism[J]. Proceedings of the CSEE, 2025, 45(8): 2992-3002. DOI: 10.13334/j.0258-8013.pcsee.232309
Citation: XU Yuzhen, ZOU Zhonghua, LIU Yulong, ZENG Ziyang, WEN Yun, JIN Tao. Information Fusion Diagnosis of Switching Tube Open-circuit Fault in V2G Charging Piles Based on Multi-scale Convolutional Neural Network and Dual-attention Mechanism[J]. Proceedings of the CSEE, 2025, 45(8): 2992-3002. DOI: 10.13334/j.0258-8013.pcsee.232309

基于多尺度卷积神经网络和双注意力机制的V2G充电桩开关管开路故障信息融合诊断

Information Fusion Diagnosis of Switching Tube Open-circuit Fault in V2G Charging Piles Based on Multi-scale Convolutional Neural Network and Dual-attention Mechanism

  • 摘要: 随着电动汽车的普及,充电基础设施需求急剧上升,迫切需要对充电桩进行维护和故障诊断。为有效利用不同尺度下的充电桩故障信号特征,该文提出一种基于多尺度卷积神经网络和双注意力机制的V2G(vehicle-to-grid)充电桩开关管开路故障信息融合诊断方法。该方法基于卷积神经网络,引入自注意力机制突出故障信号中的重要特征。同时,使用最大池化层和平均池化层处理故障信号,提供不同尺度的互补信息;此外,引入通道注意力机制关注不同通道特征,可提高模型性能;最后,采用Softmax分类器进行分类和识别。仿真结果表明,该方法在多个方面优于其他对比算法,包括收敛速度、抑制过拟合以及诊断准确率等,并且表现出卓越的抗噪性能,能够有效应对充电桩故障信号中的噪声。在实际测试中,该方法实现了开关管开路故障位置的准确定位,其准确率达96.67%。结果为充电桩开关管开路故障的诊断提供了可行的解决方案。

     

    Abstract: With the growing adoption of electric vehicles, demand for charging infrastructure has increased significantly, highlighting the need for timely maintenance and fault diagnosis of charging piles. To effectively leverage multi-scale features in charging pile fault signals, this paper proposes a fault information fusion diagnosis method for vehicle-to-grid (V2G) charging piles with open-circuit switching tubes, based on a multi-scale convolutional neural network (CNN) and dual-attention mechanism. The approach builds upon CNNs by integrating a self-attention mechanism to emphasize critical fault signal features. Simultaneously, max pooling and average pooling layers process fault signals to extract complementary multi-scale information. Additionally, a channel attention mechanism is incorporated to enhance model performance by weighting different channel features. Fault classification is performed using a Softmax classifier. Simulation results demonstrate the method's superiority over other algorithms in convergence speed, overfitting suppression, and diagnostic accuracy, while exhibiting strong noise robustness—effectively handling noise interference in fault signals. Experimental tests show the method achieves 96.67% accuracy in locating open-circuit faults in switching tubes, providing an effective solution for diagnosing such faults in charging piles.

     

/

返回文章
返回