高嘉伟, 罗颖冰, 孔赖强, 方斯顿, 牛涛, 陈冠宏, 廖瑞金. 含状态耦合约束的分布式船舶储能系统两层能量管理方法[J]. 中国电机工程学报, 2025, 45(7): 2500-2513. DOI: 10.13334/j.0258-8013.pcsee.232209
引用本文: 高嘉伟, 罗颖冰, 孔赖强, 方斯顿, 牛涛, 陈冠宏, 廖瑞金. 含状态耦合约束的分布式船舶储能系统两层能量管理方法[J]. 中国电机工程学报, 2025, 45(7): 2500-2513. DOI: 10.13334/j.0258-8013.pcsee.232209
GAO Jiawei, LUO Yingbing, KONG Laiqiang, FANG Sidun, NIU Tao, CHEN Guanhong, LIAO Ruijin. A Two-layer Energy Management Method for Distributed Ship Energy Storage System With State Coupling Constraints[J]. Proceedings of the CSEE, 2025, 45(7): 2500-2513. DOI: 10.13334/j.0258-8013.pcsee.232209
Citation: GAO Jiawei, LUO Yingbing, KONG Laiqiang, FANG Sidun, NIU Tao, CHEN Guanhong, LIAO Ruijin. A Two-layer Energy Management Method for Distributed Ship Energy Storage System With State Coupling Constraints[J]. Proceedings of the CSEE, 2025, 45(7): 2500-2513. DOI: 10.13334/j.0258-8013.pcsee.232209

含状态耦合约束的分布式船舶储能系统两层能量管理方法

A Two-layer Energy Management Method for Distributed Ship Energy Storage System With State Coupling Constraints

  • 摘要: 大规模分布式船舶储能系统(distributed energy storage system,DESS)可提高船舶微电网的冗余并保证运行安全。然而,不确定的船舶运行环境容易导致分布式储能运行特性不一致。在此背景下,该文提出一种含状态耦合约束的分布式船舶储能系统两层能量管理策略。首先,计及不确定航运环境影响,建立船舶储能系统寿命-功率特性耦合模型,量化其在不同循环寿命下的最大可用功率范围。随后,建立分布式储能系统两层能量管理策略,结合长时间尺度节能调度与短时间尺度功率分配控制,减少多时间尺度下不确定航运环境的影响;最终,通过HiL硬件在环实时仿真系统验证所提方法,与两种传统的能量管理方法相比,所提方法能够保证每个储能系统运行在安全出力范围内,且燃油经济性提高20.8%,微网母线电压暂降偏差最高降低73.5%。

     

    Abstract: The application of large-scale distributed energy storage systems (DESSs) can improve the redundancy and operational safety of ship microgrids. However, uncertain operating environments can easily lead to inconsistent characteristics of distributed energy storage. In this context, the paper proposes a two-layer energy management strategy for DESS of ships with state coupling constraints. First, considering the impact of uncertain shipping environments, an integrated model for shipboard energy storage states is established to quantify the state-of-power (SoP) range under different levels of state of health (SoH). Subsequently, the paper establishes a two-layer energy management strategy for DESS, combining long time-scale fuel economy scheduling with short time-scale power allocation strategy to mitigate the impact of uncertain navigation conditions. Finally, the proposed method is simulated in a hardware-in-the-loop (HiL) platform. Compared with two conventional methods, the proposed approach improves fuel economy by 20.8% and reduces voltage sag by 73.5%.

     

/

返回文章
返回