郭梦婕, 王晗, 严正, 张文博, 陶玮, 周新生, 文凯, 马寅, 魏海. 基于光量子计算机的虚拟电厂分布式资源解聚合优化方法[J]. 中国电机工程学报, 2025, 45(8): 2936-2945. DOI: 10.13334/j.0258-8013.pcsee.232192
引用本文: 郭梦婕, 王晗, 严正, 张文博, 陶玮, 周新生, 文凯, 马寅, 魏海. 基于光量子计算机的虚拟电厂分布式资源解聚合优化方法[J]. 中国电机工程学报, 2025, 45(8): 2936-2945. DOI: 10.13334/j.0258-8013.pcsee.232192
GUO Mengjie, WANG Han, YAN Zheng, ZHANG Wenbo, TAO Wei, ZHOU Xinsheng, WEN Kai, MA Yin, WEI Hai. Disaggregation Optimization of Distributed Resources in Virtual Power Plants Based on Optical Quantum Computer[J]. Proceedings of the CSEE, 2025, 45(8): 2936-2945. DOI: 10.13334/j.0258-8013.pcsee.232192
Citation: GUO Mengjie, WANG Han, YAN Zheng, ZHANG Wenbo, TAO Wei, ZHOU Xinsheng, WEN Kai, MA Yin, WEI Hai. Disaggregation Optimization of Distributed Resources in Virtual Power Plants Based on Optical Quantum Computer[J]. Proceedings of the CSEE, 2025, 45(8): 2936-2945. DOI: 10.13334/j.0258-8013.pcsee.232192

基于光量子计算机的虚拟电厂分布式资源解聚合优化方法

Disaggregation Optimization of Distributed Resources in Virtual Power Plants Based on Optical Quantum Computer

  • 摘要: 量子计算机是支撑高性能量子计算及其实用化的载体,其本身具有独特的运行特性,为发挥量子计算优势,需要结合实际场景与问题选择科学可行的应用方式。该文以光量子计算机为依托,首先,提出面向虚拟电厂分布式资源解聚合优化的二次无约束二值优化(quadratic unconstrained binary optimization,QUBO)模型构建方法,给出优化问题目标函数、等式和不等式约束对应QUBO模型惩罚项的转换方式,为应用光量子计算机求解电力系统运行优化问题提供可行的量子计算范式;然后,建立考虑虚拟电厂运行特征的冗余约束辨识方法与量子比特共用机制,尽可能减少QUBO问题求解所需的量子比特数量;最后,依托团队自主研发的光量子计算机真机开展应用测试,验证光量子计算机真机求解虚拟电厂解聚合优化问题的可行性与有效性,实现电力系统优化问题通过光量子计算机真机求解的突破,也为未来大规模电力系统优化问题的求解开辟新路径。

     

    Abstract: Quantum computers serve as platforms for high-performance quantum computing and its practical applications. With unique operational characteristics, they require scientifically feasible application methods tailored to specific scenarios and problems to leverage quantum advantages. This paper presents a quadratic unconstrained binary optimization (QUBO) model construction method for distributed resource disaggregation optimization in virtual power plants, based on optical quantum computing. It provides conversion methods for penalty terms in QUBO models corresponding to optimization objectives, equality constraints, and inequality constraints, establishing a practical quantum computing paradigm for power system optimization. Furthermore, a redundant constraint identification method and qubit sharing mechanism are developed, specifically considering virtual power plant operations to minimize required qubits. Utilizing the team's self-developed optical quantum computer, application tests demonstrate the feasibility and effectiveness of solving virtual power plant disaggregation problems. This breakthrough in solving power system optimization problems with optical quantum computers paves the way for addressing large-scale power system optimization challenges in the future.

     

/

返回文章
返回