陈爱琢, 张从佳, 周杨林, 史兴华, 刘敏, 慈松. 基于动态可重构电池网络状态空间模型的电池荷电状态估计[J]. 中国电机工程学报, 2025, 45(1): 396-407. DOI: 10.13334/j.0258-8013.pcsee.232151
引用本文: 陈爱琢, 张从佳, 周杨林, 史兴华, 刘敏, 慈松. 基于动态可重构电池网络状态空间模型的电池荷电状态估计[J]. 中国电机工程学报, 2025, 45(1): 396-407. DOI: 10.13334/j.0258-8013.pcsee.232151
CHEN Aizhuo, ZHANG Congjia, ZHOU Yanglin, SHI Xinghua, LIU Min, CI Song. Battery State of Charge Estimation Based on the Dynamic Reconfigurable Battery Network State Space Model[J]. Proceedings of the CSEE, 2025, 45(1): 396-407. DOI: 10.13334/j.0258-8013.pcsee.232151
Citation: CHEN Aizhuo, ZHANG Congjia, ZHOU Yanglin, SHI Xinghua, LIU Min, CI Song. Battery State of Charge Estimation Based on the Dynamic Reconfigurable Battery Network State Space Model[J]. Proceedings of the CSEE, 2025, 45(1): 396-407. DOI: 10.13334/j.0258-8013.pcsee.232151

基于动态可重构电池网络状态空间模型的电池荷电状态估计

Battery State of Charge Estimation Based on the Dynamic Reconfigurable Battery Network State Space Model

  • 摘要: 动态可重构电池网络(dynamic reconfigurable battery network,DRBN)通常由众多差异性电池单元经过电力电子开关串并联构成。为了实现对这些电池单元的均衡管理,并确保在网络中安全、精确地隔离故障电池单元,必须通过协同控制电池单元间的拓扑连接。因此,深入分析电池单元间的耦合关系对于网络管理至关重要。该文结合图论中的割集网络分析方法和电池单元的n阶Thevenin模型,构建DRBN的状态空间模型,从而将网络中所有电池单元耦合在一起。同时,鉴于电池单元的荷电状态(state of charge,SOC)信息对网络的优化运行和储能系统的能量管理至关重要,该文提出一种基于DRBN状态空间模型的SOC一体化估计方法。为了验证所提方法的有效性,通过实验和数值仿真,将其与现有研究中广泛采用的基于电池单元模型的荷电状态估计方法进行了对比分析,以得出最终结论。

     

    Abstract: Dynamic reconfigurable battery networks (DRBN) are typically composed of numerous batteries with various characteristics, connected in series and parallel through power electronic switches. To achieve balanced management of these batteries and ensure the safe and precise isolation of faulty ones within the network, it is essential to cooperatively control the topological connections between the batteries. Therefore, a deep analysis of the coupling relationships between battery units is crucial for network management. This paper combines the cut-set network analysis method from graph theory and the n-order Thevenin model of battery units to construct a state-space model for the DRBN, thereby coupling all battery units in the network. Additionally, considering the critical importance of battery state of charge (SOC) for the optimized operation of the network and energy management of the energy storage system, this paper proposes an integrated SOC estimation method based on the state-space model of the DRBN. To validate the effectiveness of the proposed method, through experiments and numerical simulations, this paper compares it with the widely adopted SOC estimation methods based on battery unit models from existing research, drawing a conclusive result.

     

/

返回文章
返回