曲朝阳, 臧积业, 曲楠, 董运昌, 姜涛, 梁丰. 基于拟态视觉的光伏电池缺陷检测仿生模型[J]. 中国电机工程学报, 2025, 45(9): 3530-3542. DOI: 10.13334/j.0258-8013.pcsee.232104
引用本文: 曲朝阳, 臧积业, 曲楠, 董运昌, 姜涛, 梁丰. 基于拟态视觉的光伏电池缺陷检测仿生模型[J]. 中国电机工程学报, 2025, 45(9): 3530-3542. DOI: 10.13334/j.0258-8013.pcsee.232104
QU Zhaoyang, ZANG Jiye, QU Nan, DONG Yunchang, JIANG Tao, LIANG Feng. Biomimetic Model of Photovoltaic Cell Defect Detection Based on Mimic Vision[J]. Proceedings of the CSEE, 2025, 45(9): 3530-3542. DOI: 10.13334/j.0258-8013.pcsee.232104
Citation: QU Zhaoyang, ZANG Jiye, QU Nan, DONG Yunchang, JIANG Tao, LIANG Feng. Biomimetic Model of Photovoltaic Cell Defect Detection Based on Mimic Vision[J]. Proceedings of the CSEE, 2025, 45(9): 3530-3542. DOI: 10.13334/j.0258-8013.pcsee.232104

基于拟态视觉的光伏电池缺陷检测仿生模型

Biomimetic Model of Photovoltaic Cell Defect Detection Based on Mimic Vision

  • 摘要: 太阳能在新型电力系统中扮演重要的角色,光伏电池的缺陷检测对于电力系统向清洁能源的转型愈发重要。传统的模型难以在纹理复杂的光伏电池上识别微小的瑕疵,为此提出拟态视觉仿生检测模型。首先,提出以人类感受野和周边视觉机制为启发的骨干网络,设计拟态视觉注意力机制及仿生特征提取模块,充分提取动态上下文并感知周边视觉注意力,关联二者以在充满噪声的背景下捕捉缺陷目标的细粒度特征;其次,在特征融合阶段,根据人脑信息传递方式设计分离式空间语义融合金字塔,在不同的信息传递路径中设计语义和空间信息传递模块,以增强缺陷特征对空间和语义信息的表达能力;接着,以脑皮层的分区机制为启发,设计能自适应融合的分离式检测头结构,自适应监管调控不同尺度的特征,并解耦分类与定位任务,分区关注并计算位置与类别信息;最后,通过仿真实验验证模型的有效性。

     

    Abstract: Solar energy plays a crucial role in new power systems, making photovoltaic cell defect detection increasingly vital for transitioning to clean energy. Since traditional target detection models struggle to identify tiny defects on textured photovoltaic cells, this paper proposes an anthropomorphic vision biomimetic detection model. First, a backbone network inspired by human sensory fields and peripheral vision mechanisms is developed, incorporating an anthropomorphic visual attention mechanism and biomimetic feature extraction module to fully extract dynamic context while perceiving peripheral visual attention, correlating both to capture fine-grained defect features in noisy backgrounds. Second, for feature fusion, a separated spatial-semantic fusion pyramid is designed based on human brain information transfer patterns, with dedicated semantic and spatial information transfer modules in different pathways to enhance defective feature representation. Then, inspired by brain cortex partitioning mechanisms, an adaptively fused separated detection head is proposed to supervise multi-scale features adaptively while decoupling classification and localization tasks, with partitioned computation of location and category information. Finally, simulation experiments verify the model's effectiveness.

     

/

返回文章
返回