张信, 杨奕, 包诗媛, 张路, 陈诗雨. 具有宽范围负载能力双向E#型WPT系统研究[J]. 中国电机工程学报, 2025, 45(4): 1610-1622. DOI: 10.13334/j.0258-8013.pcsee.232079
引用本文: 张信, 杨奕, 包诗媛, 张路, 陈诗雨. 具有宽范围负载能力双向E#型WPT系统研究[J]. 中国电机工程学报, 2025, 45(4): 1610-1622. DOI: 10.13334/j.0258-8013.pcsee.232079
ZHANG Xin, YANG Yi, BAO Shiyuan, ZHANG Lu, CHEN Shiyu. Research on Bidirectional Class E# Type WPT System With Wide Load Range Capability[J]. Proceedings of the CSEE, 2025, 45(4): 1610-1622. DOI: 10.13334/j.0258-8013.pcsee.232079
Citation: ZHANG Xin, YANG Yi, BAO Shiyuan, ZHANG Lu, CHEN Shiyu. Research on Bidirectional Class E# Type WPT System With Wide Load Range Capability[J]. Proceedings of the CSEE, 2025, 45(4): 1610-1622. DOI: 10.13334/j.0258-8013.pcsee.232079

具有宽范围负载能力双向E#型WPT系统研究

Research on Bidirectional Class E# Type WPT System With Wide Load Range Capability

  • 摘要: 传统双向E型无线电能传输(wireless power transfer,WPT)拓扑易进入硬开关状态,导致电能传输效率低。针对此,该文提出无线电能传输系统的改进E#型拓扑及其移相控制策略。首先,构建软开关状态负载范围更宽的双向E#型WPT电路拓扑数学模型,分析并提取电路实现软开关工作状态的关键变量与约束条件,理论上证明所提拓扑的有效性。然后,推导电路中线圈互感和负载阻抗等参数的解析关系式,并基于此提出可保证系统在负载时始终处于最佳工作状态的移相控制策略。该策略通过控制开关管的门极驱动信号相位,使谐振元件内部储存的能量提前或者滞后释放,从而将开关管修正回软开关状态。最后,通过仿真和实验验证所提双向E#型WPT系统的有效性。实验结果表明,所提方法可保证在5~30 Ω的负载范围内电路工作在软开关状态,该范围内的电能传输效率峰值达84.3%。

     

    Abstract: Traditional bi-directional class E wireless power transfer circuits are prone to hard switching states, resulting in low power transfer efficiency. To solve this problem, this paper proposes an improved Class E# circuit topology and its phase-shifting control strategy. Firstly, the mathematical model of the E# circuit topology with a wider applicable load range for a zero-voltage switching state is designed. The key variables and constraints for the circuit to realize the zero-voltage switching state (ZVS) are analyzed and extracted, theoretically proving the effectiveness of the proposed topology. Then, the analytical relationships of the coil mutual inductance and load impedance in the circuit are derived. Based on this, a phase-shifting control strategy is proposed to guarantee that the system operates at the optimal states under different loads. By controlling the phase of the gate drive signal of the switching devices, the energy stored inside the resonant elements can be released in advance or with delay, thus correcting the switching devices back to a ZVS state. Finally, the effectiveness of the proposed bi-directional Class E# circuit is verified via simulation and experiments. Numerical results demonstrate that the proposed method guarantees a circuit ZVS state within a load range of 5~30 Ω, and the peak power transfer efficiency reaches 84.3%.

     

/

返回文章
返回