郭冰新, 谢长君, 朱文超, 杨扬, 杜帮华. 基于混合概率数据驱动模型的燃料电池性能衰减预测方法[J]. 中国电机工程学报, 2025, 45(10): 3892-3901. DOI: 10.13334/j.0258-8013.pcsee.232064
引用本文: 郭冰新, 谢长君, 朱文超, 杨扬, 杜帮华. 基于混合概率数据驱动模型的燃料电池性能衰减预测方法[J]. 中国电机工程学报, 2025, 45(10): 3892-3901. DOI: 10.13334/j.0258-8013.pcsee.232064
GUO Bingxin, XIE Changjun, ZHU Wenchao, YANG Yang, DU Banghua. Fuel Cell Performance Degradation Prediction Method Based on Hybrid Probabilistic Data-driven Model[J]. Proceedings of the CSEE, 2025, 45(10): 3892-3901. DOI: 10.13334/j.0258-8013.pcsee.232064
Citation: GUO Bingxin, XIE Changjun, ZHU Wenchao, YANG Yang, DU Banghua. Fuel Cell Performance Degradation Prediction Method Based on Hybrid Probabilistic Data-driven Model[J]. Proceedings of the CSEE, 2025, 45(10): 3892-3901. DOI: 10.13334/j.0258-8013.pcsee.232064

基于混合概率数据驱动模型的燃料电池性能衰减预测方法

Fuel Cell Performance Degradation Prediction Method Based on Hybrid Probabilistic Data-driven Model

  • 摘要: 精确预测燃料电池衰减特性能够为控制和诊断提供良好的决策依据。然而,主流的数据驱动方法在建模阶段,通常未考虑实验环境造成的测量误差及模型对数据的依赖性等不确定性因素。因此,在预测形式上只能提供单一点估计的预测结果,进而导致性能衰减,结果缺乏足够可信度。该文提出一种基于混合概率的数据驱动模型(mixed-probability data-driven model,MPDD),通过贝叶斯理论对多种数据驱动模型的结构特点进行融合,实现模型对数据依赖性的不确定性量化,为燃料电池性能衰减趋势提供点估计和区间估计2种形式的预测结果。基于燃料电池动态负载周期循环(fuel cell dynamic load cycle,FC-DLC)中的全工况数据,MPDD模型的点估计结果要优于单一数据驱动模型。此外,基于FC-DLC中的稳态数据,MPDD模型相较于高斯过程回归(Gaussian process regression,GPR)的区间估计集中率提升最高可达33%。结果表明,该预测方法具有良好的不确定性量化能力,可为电氢耦合装置的运行提供更实用的决策建议。

     

    Abstract: Accurately predicting the degradation characteristics of fuel cells can provide a solid basis for control and diagnosis decisions. However, mainstream data-driven methods often do not take into account uncertainty factors such as measurement errors caused by experimental conditions and the model's dependence on the data during the modeling phase. Therefore, only a single point estimate can be provided, resulting in a lack of sufficient credibility in the performance degradation results. This paper proposes a mixed-probability data-driven model (MPDD) that combines the characteristics of multiple data-driven models using Bayesian theory, which could quantify the uncertainty of the model's dependence on the data and provide prediction results for fuel cell performance degradation trends in both point estimates and interval estimates. Based on the full operating condition data in fuel cell dynamic load cycle (FC-DLC), the point estimate results of the MPDD model outperform those of a single data-driven model. Furthermore, based on the steady-state data in FC-DLC, the MPDD model achieves up to a 33% improvement in the concentration rate of interval estimates compared to Gaussian process regression (GPR). The prediction results indicate that this forecasting method possesses excellent uncertainty quantification capabilities and could provide more practical decision recommendations for the operation of electro-hydrogen coupling devices.

     

/

返回文章
返回