唐双喜, 张雪霞, 黄磊, 邱丹洛. 机车动态工况下质子交换膜燃料电池多孔电极衰退机理分析[J]. 中国电机工程学报, 2025, 45(7): 2699-2709. DOI: 10.13334/j.0258-8013.pcsee.232062
引用本文: 唐双喜, 张雪霞, 黄磊, 邱丹洛. 机车动态工况下质子交换膜燃料电池多孔电极衰退机理分析[J]. 中国电机工程学报, 2025, 45(7): 2699-2709. DOI: 10.13334/j.0258-8013.pcsee.232062
TANG Shuangxi, ZHANG Xuexia, HUANG Lei, QIU Danluo. Degradation Mechanism Analysis of Porous Electrode in Proton Exchange Membrane Fuel Cell Under Dynamic Conditions of Locomotive[J]. Proceedings of the CSEE, 2025, 45(7): 2699-2709. DOI: 10.13334/j.0258-8013.pcsee.232062
Citation: TANG Shuangxi, ZHANG Xuexia, HUANG Lei, QIU Danluo. Degradation Mechanism Analysis of Porous Electrode in Proton Exchange Membrane Fuel Cell Under Dynamic Conditions of Locomotive[J]. Proceedings of the CSEE, 2025, 45(7): 2699-2709. DOI: 10.13334/j.0258-8013.pcsee.232062

机车动态工况下质子交换膜燃料电池多孔电极衰退机理分析

Degradation Mechanism Analysis of Porous Electrode in Proton Exchange Membrane Fuel Cell Under Dynamic Conditions of Locomotive

  • 摘要: 为探究质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)在机车动态工况下的衰退行为,针对300 W的电堆进行900 h耐久性实验,该文提出一种弛豫时间分布与传输线模型相结合的衰退机理评估方法。首先,根据电堆的不一致性选择衰退最明显的单池作为研究对象,在分析极化曲线和阻抗谱的基础上,采用弛豫时间分布探究各频段极化过程的变化趋势,并建立传输线模型进行参数辨识及量化;最后,利用扫描电子显微镜(scanning electron microscope,SEM)表征不同单池的微观形貌。结果表明,0~500 h期间,催化剂性能基本保持稳定,碳腐蚀使电极孔隙率增加并改善质量传输损耗;500~900 h期间,催化剂加速衰退,累积的碳腐蚀导致电极结构严重破坏,大量微孔消失和结构坍塌使质量传输性能迅速恶化,最终导致PEMFC失效。所提方法能够有效评估燃料电池多孔电极的衰退机理。

     

    Abstract: To investigate the degradation behavior of proton exchange membrane fuel cells (PEMFCs) under dynamic conditions of locomotives, we have conducted a 900hour durability test on a 300 W stack. A novel approach combining the distribution of relaxation time and the transmission line model is proposed to evaluate the degradation mechanism. The single cell with significant voltage drop is selected for the study according to the inconsistency analysis of the stack. Based on the polarization curve and impedance spectroscopy analysis, the distribution of relaxation time is used to investigate the trend of polarization processes in each frequency band, and the transmission line model is established for parameter identification and quantification. Finally, scanning electron microscope (SEM) is used to characterize the microscopic morphology of different cells. The experimental results show that during 0~500 h period, the catalyst performance remains essentially stable, while carbon corrosion increases electrode porosity and alleviates the mass transport loss; during 500~900 h period, the performance of catalyst accelerates decay. Carbon corrosion accumulates and causes severe damage to the electrode structure. The loss of numerous micropores and subsequent structural compaction and collapse rapidly deteriorate the mass transport performance, ultimately resulting in the failure of PEMFC. The results show that the proposed method can effectively evaluate the degradation mechanism of porous electrode in fuel cells.

     

/

返回文章
返回