杨楠, 梁鹏程, 卢延明, 丁力, 代洲, 边瑞恩, 王灿. 考虑改造扩建的电动汽车充电站自适应分阶段规划方法[J]. 中国电机工程学报, 2025, 45(5): 1716-1728. DOI: 10.13334/j.0258-8013.pcsee.232047
引用本文: 杨楠, 梁鹏程, 卢延明, 丁力, 代洲, 边瑞恩, 王灿. 考虑改造扩建的电动汽车充电站自适应分阶段规划方法[J]. 中国电机工程学报, 2025, 45(5): 1716-1728. DOI: 10.13334/j.0258-8013.pcsee.232047
YANG Nan, LIANG Pengcheng, LU Yanming, DING Li, DAI Zhou, BIAN Ruien, WANG Can. Adaptive Staging Planning Method of EV Charging Stations Considering Renovation and Expansion[J]. Proceedings of the CSEE, 2025, 45(5): 1716-1728. DOI: 10.13334/j.0258-8013.pcsee.232047
Citation: YANG Nan, LIANG Pengcheng, LU Yanming, DING Li, DAI Zhou, BIAN Ruien, WANG Can. Adaptive Staging Planning Method of EV Charging Stations Considering Renovation and Expansion[J]. Proceedings of the CSEE, 2025, 45(5): 1716-1728. DOI: 10.13334/j.0258-8013.pcsee.232047

考虑改造扩建的电动汽车充电站自适应分阶段规划方法

Adaptive Staging Planning Method of EV Charging Stations Considering Renovation and Expansion

  • 摘要: 在电动汽车(electric vehicle,EV)爆发式增长背景下,如何制订出能够很好适应电动汽车规模发展的充电站(charging station,CS)规划方案,以实现CS的合理规划布局,对促进EV产业的健康发展具有重要意义。该文将规划阶段划分和充电站改造扩建作为决策手段纳入到充电站规划模型之中,提出一种考虑改造扩建的电动汽车充电站自适应分阶段规划方法。首先,考虑充电站、电网、用户的利益,以阶段总数、各阶段年限、选址、定容、改造为决策变量,以投资和排队时间综合成本最小为目标构建充电站规划模型;然后,通过考虑电动汽车的规模演化过程,基于分阶段判断条件和改造扩建决策,建立充电站自适应分阶段决策模型;最后,采用免疫遗传算法对模型进行求解。基于仿真算例的结果验证所提方法的经济性和有效性。

     

    Abstract: With the rapid expansion of electric vehicle (EV), formulating a planning scheme for charging station (CS) that aligns with the scale development of electric vehicle is crucial for achieving rational planning and layout of CS and fostering the healthy development of EV industry. In this paper, the division of phases and the reconstruction and expansion of CSs as a decision-making method into the planning model, and an adaptive phased planning method for electric vehicle charging stations considering reconstruction and expansion is proposed. First, considering the interests of CSs, power grids and users, a CS planning model is constructed with the total number of stages, the period of each stage, site selection, capacity determination and renovation as decision variables, and the minimum comprehensive cost of investment and queuing time as the goal. Then, by considering the scale evolution process of EVs, based on the phased judgment conditions and the transformation and expansion decision-making, an adaptive phased decision-making model of CSs is established. Finally, the immune genetic algorithm is used to solve the model. The results based on the simulation example verify the economy and effectiveness of the proposed method.

     

/

返回文章
返回