林俊杰, 涂明权, 朱利鹏, 宋文超, 陆超. 基于时空多视图学习算法的PMU电压数据重构方法[J]. 中国电机工程学报, 2024, 44(24): 9533-9545. DOI: 10.13334/j.0258-8013.pcsee.231995
引用本文: 林俊杰, 涂明权, 朱利鹏, 宋文超, 陆超. 基于时空多视图学习算法的PMU电压数据重构方法[J]. 中国电机工程学报, 2024, 44(24): 9533-9545. DOI: 10.13334/j.0258-8013.pcsee.231995
LIN Junjie, TU Mingquan, ZHU Lipeng, SONG Wenchao, LU Chao. PMU Voltage Data Reconstruction Method Based on Spatiotemporal Multi-view Learning Algorithm[J]. Proceedings of the CSEE, 2024, 44(24): 9533-9545. DOI: 10.13334/j.0258-8013.pcsee.231995
Citation: LIN Junjie, TU Mingquan, ZHU Lipeng, SONG Wenchao, LU Chao. PMU Voltage Data Reconstruction Method Based on Spatiotemporal Multi-view Learning Algorithm[J]. Proceedings of the CSEE, 2024, 44(24): 9533-9545. DOI: 10.13334/j.0258-8013.pcsee.231995

基于时空多视图学习算法的PMU电压数据重构方法

PMU Voltage Data Reconstruction Method Based on Spatiotemporal Multi-view Learning Algorithm

  • 摘要: 同步相量测量装置(phasor measurement unit,PMU)具有同步性好、分辨率高、相角直接可测等优点,是实现电力系统在线实时状态感知的重要信息源。然而,由于受到设备故障、气候干扰、通信问题等因素影响,实际电网中的PMU数据容易出现数据缺失和异常等情况,这将干扰后续基于PMU数据的电网高级应用,进而影响电网状态感知和运行调度的可靠性。首先,通过分析现场实测的PMU数据,归纳出4种低质量数据情况,并且利用机理分析和相关性分析方法对系统运行状态进行辨识;然后,将多视图学习方法与电网运行机理相结合,提出基于时空信息特征融合的多视图数据初步重构算法,对PMU低质量和缺失数据进行重构;最后,结合系统不同运行状态特点,利用不同视图生成数据进行低质量数据的辨识,并提出一种基于历史数据的自适应加权的缺失数据重构方法。仿真和实测数据表明该方法能有效对PMU低质量数据进行辨识并实时重构生成,为PMU数据在电力系统中的应用提供有效保障。

     

    Abstract: Phasor measurement units (PMU) have the advantages of good synchronization, high resolution, direct phase angle measurement, etc. It is an important information source for realizing on-line real-time state perception of power systems. However, due to the influence of equipment failure, climate interference, communication problems and other factors, PMU data in the actual power grid are prone to data loss and anomalies, which will interfere with the subsequent advanced power grid applications based on PMU data, thereby affecting the reliability of power grid state perception and operation scheduling. Four kinds of low-quality data are summarized by analyzing the PMU data measured in the field, and the operating state of the system is identified by using mechanism analysis and correlation analysis methods. Then, combining the multi-view learning method with the power grid operation mechanism, a preliminary multi-view data reconstruction algorithm based on spatio-temporal information feature fusion is proposed to reconstruct the low-quality and missing PMU data. Finally, according to the characteristics of different running states of the system, the low quality data are identified by using different views to generate data, and an adaptive weighted missing data reconstruction method based on historical data is proposed. Simulation and measured data show that this method can effectively identify and reconstruct PMU low quality data in real time, which provides effective guarantee for the application of PMU data in power systems.

     

/

返回文章
返回