王明博, 李刚, 李亚鹏, 程春田, 武新宇, 李秀峰. 计及不同交易方式的梯级水电站的中长期合约电量分解方法[J]. 中国电机工程学报, 2025, 45(7): 2514-2526. DOI: 10.13334/j.0258-8013.pcsee.231972
引用本文: 王明博, 李刚, 李亚鹏, 程春田, 武新宇, 李秀峰. 计及不同交易方式的梯级水电站的中长期合约电量分解方法[J]. 中国电机工程学报, 2025, 45(7): 2514-2526. DOI: 10.13334/j.0258-8013.pcsee.231972
WANG Mingbo, LI Gang, LI Yapeng, CHENG Chuntian, WU Xinyu, LI Xiufeng. Decomposition Method for Medium and Long-term Contract of Cascaded Hydropower Considering Multiple Trading Modes[J]. Proceedings of the CSEE, 2025, 45(7): 2514-2526. DOI: 10.13334/j.0258-8013.pcsee.231972
Citation: WANG Mingbo, LI Gang, LI Yapeng, CHENG Chuntian, WU Xinyu, LI Xiufeng. Decomposition Method for Medium and Long-term Contract of Cascaded Hydropower Considering Multiple Trading Modes[J]. Proceedings of the CSEE, 2025, 45(7): 2514-2526. DOI: 10.13334/j.0258-8013.pcsee.231972

计及不同交易方式的梯级水电站的中长期合约电量分解方法

Decomposition Method for Medium and Long-term Contract of Cascaded Hydropower Considering Multiple Trading Modes

  • 摘要: 梯级水电考虑电价不确定性因素条件下,满足西电东送框架协议、双边协商和集中交易等多交易方式合同差异化需求,提出更易于执行的中长期电量分解曲线,是当前研究热点和亟待解决的问题。结合西南某水电占比较高的省级电力市场结构,该文提出计及不同交易方式的梯级水电站中长期合约电量分解方法。采用大数据挖掘结合场景聚类缩减方法获取不同行业双边协商合同小时用电特征曲线,利用多元高斯分布拟合电价场景;然后,建立中长期差价合约收益最大、合同履约偏差最小、梯级期末蓄能最大的多目标优化模型,精细化考虑水力电力耦合关系,实现月度720 h仿真模拟调度,从而获取不同交易方式签约电量的曲线分解方案;最后,以西南某流域梯级水电实际资料为例,结果表明,所提方法得到的电量分解曲线能满足不同交易方式的差异化特征,在短期尺度更容易执行,进一步提高水电市场化收益。

     

    Abstract: To address the differentiated requirements of multiple contracts, such as the West-East Power Transmission Framework Agreement, bilateral negotiations, and centralized bidding, proposing a more practical and implementable medium- and long-term contract decomposition method that considers uncertainties like runoff and electricity prices for cascaded hydropower is currently a key research focus and a challenge to be resolved. This study introduces a medium- and long-term contract power generation decomposition method for cascade hydropower stations, tailored to different trading modes, based on the provincial power market structure with a high proportion of hydropower in the southwest region. By employing big data mining combined with scenario clustering, hourly electricity consumption characteristic curves for bilateral negotiation contracts across various industries are derived, and multivariate Gaussian distribution is used to model electricity price scenarios. Subsequently, a multi-objective optimization model is established to maximize the return on medium- and long-term contracts for difference, minimize contract performance deviation, and maximize energy storage at the end of the dispatch period. The model is refined to achieve a 720 h monthly simulation schedule, yielding hourly contract decomposition characteristic curves with the highest contract transaction proportion for each trading mode. Finally, using actual data from cascade hydropower stations in a specific basin as a case study, the results demonstrate that the proposed method's contract decomposition curves align with the differentiated trading characteristics of various modes, are more executable in the short term, and further enhance the marketization benefits of hydropower.

     

/

返回文章
返回