孟宏宇, 张建良, 蔡兆龙, 李超勇. 基于CNN-BiLSTM-Attention的直流微电网故障诊断研究[J]. 中国电机工程学报, 2025, 45(4): 1369-1380. DOI: 10.13334/j.0258-8013.pcsee.231736
引用本文: 孟宏宇, 张建良, 蔡兆龙, 李超勇. 基于CNN-BiLSTM-Attention的直流微电网故障诊断研究[J]. 中国电机工程学报, 2025, 45(4): 1369-1380. DOI: 10.13334/j.0258-8013.pcsee.231736
MENG Hongyu, ZHANG Jianliang, CAI Zhaolong, LI Chaoyong. Research on DC Microgrid Fault Diagnosis Based on CNN-BiLSTM-Attention[J]. Proceedings of the CSEE, 2025, 45(4): 1369-1380. DOI: 10.13334/j.0258-8013.pcsee.231736
Citation: MENG Hongyu, ZHANG Jianliang, CAI Zhaolong, LI Chaoyong. Research on DC Microgrid Fault Diagnosis Based on CNN-BiLSTM-Attention[J]. Proceedings of the CSEE, 2025, 45(4): 1369-1380. DOI: 10.13334/j.0258-8013.pcsee.231736

基于CNN-BiLSTM-Attention的直流微电网故障诊断研究

Research on DC Microgrid Fault Diagnosis Based on CNN-BiLSTM-Attention

  • 摘要: 针对现有直流微电网故障诊断面临的快速性与准确性问题,提出一种融合注意力机制的卷积神经网络(convolutional neural network,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络的故障诊断方法。首先,利用CNN挖掘故障数据在某一时刻的纵向细节特征,并压缩数据长度,降低后续网络训练参数量,以提升故障诊断的快速性;进而,构建以BiLSTM为核心的级联网络,实现对故障数据在故障演化过程中横向历史特征的提取,并融合注意力机制促使模型关注故障时刻数据的特征变化规律,以提升故障诊断的准确性。仿真结果表明,相比于主流故障诊断方法,该文所提方法具有更高的准确率与更快的识别速度,并且对于故障记录数据在噪声干扰、不平衡样本以及小样本等情况下均具有良好的诊断性能。

     

    Abstract: In this paper, a fault diagnosis method is proposed for existing DC microgrids to address the challenges of speed and accuracy. The proposed method combines the strengths of convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) network, incorporating an attention mechanism. Specifically, CNN is utilized to extract vertical detailed features from fault data at a specific moment, compressing the data length and reducing subsequent network training parameters to improve the speed of fault diagnosis. Furthermore, we construct a cascaded network with BiLSTM as the core, enabling the extraction of horizontal historical features from fault data during the fault evolution process. The attention mechanism is integrated to enhance the model's focus on the feature changes in fault data, thereby improving the accuracy of fault diagnosis. Simulation results demonstrate that the proposed method outperforms mainstream fault diagnosis methods in terms of accuracy and recognition speed. Additionally, the proposed method exhibits excellent diagnostic performance for fault record data under conditions of noise interference, imbalanced samples, and small sample sizes.

     

/

返回文章
返回