黄南天, 孙赫宏, 王圣元, 蔡国伟, 张良, 王日俊. 计及多公共充电站差异化耦合关联的电动汽车充电负荷时-空短期预测[J]. 中国电机工程学报, 2025, 45(4): 1424-1435. DOI: 10.13334/j.0258-8013.pcsee.231589
引用本文: 黄南天, 孙赫宏, 王圣元, 蔡国伟, 张良, 王日俊. 计及多公共充电站差异化耦合关联的电动汽车充电负荷时-空短期预测[J]. 中国电机工程学报, 2025, 45(4): 1424-1435. DOI: 10.13334/j.0258-8013.pcsee.231589
HUANG Nantian, SUN Hehong, WANG Shengyuan, CAI Guowei, ZHANG Liang, WANG Rijun. Short-term Spatial-temporal Forecasting of Electric Vehicle Charging Load With Differentiated Spatial-temporal Coupling Correlation of Multiple Public Charging Stations[J]. Proceedings of the CSEE, 2025, 45(4): 1424-1435. DOI: 10.13334/j.0258-8013.pcsee.231589
Citation: HUANG Nantian, SUN Hehong, WANG Shengyuan, CAI Guowei, ZHANG Liang, WANG Rijun. Short-term Spatial-temporal Forecasting of Electric Vehicle Charging Load With Differentiated Spatial-temporal Coupling Correlation of Multiple Public Charging Stations[J]. Proceedings of the CSEE, 2025, 45(4): 1424-1435. DOI: 10.13334/j.0258-8013.pcsee.231589

计及多公共充电站差异化耦合关联的电动汽车充电负荷时-空短期预测

Short-term Spatial-temporal Forecasting of Electric Vehicle Charging Load With Differentiated Spatial-temporal Coupling Correlation of Multiple Public Charging Stations

  • 摘要: 现有电动汽车充电负荷预测研究,多对单一预测对象开展研究。同时,对充电场景下多公共充电站的充电负荷时-空预测研究较少。公共充电站的充电负荷波动剧烈,较私人充电设施的充电负荷难以预测。为此,提出一个基于自适应时-空图卷积神经网络的多公共充电站充电负荷时-空短期预测方法。首先,通过快速最大信息系数构建含有日期、气象以及历史负荷特征的多节点特征集。并通过数据自适应图生成,构建动态相似权时-空图,实现多公共充电站空间连接关系重构。然后,构建图卷积层,差异化生成各节点的空间聚合特征,实现全域充电节点差异化特征增强。同时,通过节点自适应参数学习方法学习不同充电节点的充电模式。最后,通过门控循环单元层挖掘空间聚合特征的时域特征。所提出的公共充电站充电负荷时-空预测方法相应的对称平均绝对百分比误差(symmetric mean absolute percentage error,SMAPE)和平均绝对误差(mean absolute error,MAE)分别为12.95%和31.72 kW。

     

    Abstract: The existing EV charging load forecasting studies are mostly conducted on a single forecasting object. Meanwhile, less research has been conducted on the spatial-temporal forecasting of charging loads at multiple public charging stations. The charging loads of public charging stations fluctuate drastically and are more difficult to forecast compared to those at private charging facilities. To this end, an adaptive spatial-temporal graph neural convolutional network based spatial-temporal short-term forecasting method for charging loads at multi-public charging stations is proposed. First, multi-node feature sets are constructed by using Rapid-MIC. Through data adaptive graph generation, a similar-weighted spatial-temporal graph is constructed to reconstruct the spatial connection relationship of multi-public charging stations. Then, graph convolution layers are constructed to generate the spatial aggregation features based on the differentiated coupled spatial-temporal correlations of each node, so as to realize the differential feature enhancement of nodes in the whole domain. Meanwhile, the charging patterns of different nodes are learned by node adaptive parameter learning. Finally, the temporal domain features of spatial aggregation features are mined by gated recurrent unit layers. The symmetric mean absolute percentage error(SMAPE) and mean absolute error(MAE) values of the proposed spatial-temporal forecasting method for charging loads at public charging stations are 12.95% and 31.72 kW.

     

/

返回文章
返回