邓丰, 陈依林, 曾哲, 史鸿飞. 数据-知识联合驱动的配电网高阻接地故障检测方法[J]. 中国电机工程学报, 2024, 44(24): 9618-9632. DOI: 10.13334/j.0258-8013.pcsee.231535
引用本文: 邓丰, 陈依林, 曾哲, 史鸿飞. 数据-知识联合驱动的配电网高阻接地故障检测方法[J]. 中国电机工程学报, 2024, 44(24): 9618-9632. DOI: 10.13334/j.0258-8013.pcsee.231535
DENG Feng, CHEN Yilin, ZENG Zhe, SHI Hongfei. Combined Data-knowledge Driven Detection Method for High Impedance Faults in Distribution Networks[J]. Proceedings of the CSEE, 2024, 44(24): 9618-9632. DOI: 10.13334/j.0258-8013.pcsee.231535
Citation: DENG Feng, CHEN Yilin, ZENG Zhe, SHI Hongfei. Combined Data-knowledge Driven Detection Method for High Impedance Faults in Distribution Networks[J]. Proceedings of the CSEE, 2024, 44(24): 9618-9632. DOI: 10.13334/j.0258-8013.pcsee.231535

数据-知识联合驱动的配电网高阻接地故障检测方法

Combined Data-knowledge Driven Detection Method for High Impedance Faults in Distribution Networks

  • 摘要: 配电网高阻接地故障(high impedance fault,HIF)特征复杂多样,知识驱动方法难以适应多样化的故障场景,数据驱动方法决策过程缺乏机理分析,可解释性较低。为此,该文提出一种数据-知识联合驱动的HIF检测方法。首先,定性分析了不同接地介质下HIF零序电流波形的多样化畸变特征,得出结论:多样化畸变体现在畸变程度、畸变偏移和不规则畸变3个方面;然后,通过定量分析不同介质条件下伏安特性曲线拟合斜率特征,明晰了基于伏安特性分析的知识驱动检测方法的适用故障场景,联合基于支持向量机的数据驱动检测方法,建立了基于引导机制的数据-知识联合驱动模型,通过畸变系数、偏移系数和不规则畸变判据定量描述波形畸变特征,根据故障场景引导相适应的检测模型实现HIF检测。仿真结果表明:在包含多种畸变类型的HIF数据集中,所提方法准确率高达98.2%,可以灵敏、可靠检测8 kΩ的配电网HIF。

     

    Abstract: The high impedance fault (HIF) in distribution networks exhibits complex and diverse characteristics. Knowledge-driven methods face challenges in adapting to diversified fault scenarios, while data-driven methods overlook mechanism analysis in the decision-making process, leading to a lack of interpretability. To address this issue, the paper proposes a combined data-knowledge detection method for HIF. First, a qualitative analysis is conducted on the diverse distortion characteristics of zero-sequence current waveforms for HIF under different grounding dielectrics. It is concluded that the diversification of distortions manifests in terms of distortion degree, distortion offset, and irregular distortions. Then, by quantitatively analyzing the slope characteristics of volt-ampere characteristic curves under different media conditions, the applicability of knowledge-driven detection methods based on voltage-current characteristics analysis is delineated. In combination with data-driven detection methods based on support vector machines, a data-knowledge combined driving model is established based on a guided mechanism. The distortion coefficient, offset coefficient, and irregular distortion criteria are used to quantitatively describe waveform distortion characteristics. By guiding the detection model according to the specific fault scenarios, HIF detection for different fault scenarios is achieved. The simulation results show that the proposed method has an accuracy of up to 98.2% in HIF datasets containing multiple distortion types, and it can sensitively and reliably detect 8 kΩ distribution network HIFs.

     

/

返回文章
返回