王谱宇, 丁一帆, 陈鉴祥, 刘兴江, 方凯杰, 程含渺, 张小平. 基于动态谐波导纳参数的非侵入式负荷监测数据模拟生成方法[J]. 中国电机工程学报, 2025, 45(3): 923-935. DOI: 10.13334/j.0258-8013.pcsee.231493
引用本文: 王谱宇, 丁一帆, 陈鉴祥, 刘兴江, 方凯杰, 程含渺, 张小平. 基于动态谐波导纳参数的非侵入式负荷监测数据模拟生成方法[J]. 中国电机工程学报, 2025, 45(3): 923-935. DOI: 10.13334/j.0258-8013.pcsee.231493
WANG Puyu, DING Yifan, CHEN Jianxiang, LIU Xingjiang, FANG Kaijie, CHENG Hanmiao, ZHANG Xiaoping. Non-invasive Load Monitoring Data Simulation Generation Method Based on Dynamic Harmonic Admittance Parameters[J]. Proceedings of the CSEE, 2025, 45(3): 923-935. DOI: 10.13334/j.0258-8013.pcsee.231493
Citation: WANG Puyu, DING Yifan, CHEN Jianxiang, LIU Xingjiang, FANG Kaijie, CHENG Hanmiao, ZHANG Xiaoping. Non-invasive Load Monitoring Data Simulation Generation Method Based on Dynamic Harmonic Admittance Parameters[J]. Proceedings of the CSEE, 2025, 45(3): 923-935. DOI: 10.13334/j.0258-8013.pcsee.231493

基于动态谐波导纳参数的非侵入式负荷监测数据模拟生成方法

Non-invasive Load Monitoring Data Simulation Generation Method Based on Dynamic Harmonic Admittance Parameters

  • 摘要: 非侵入式负荷监测(non-invasive load monitoring,NILM)技术在推动电力系统管理智能化及引导用户用电计划合理化方面具有重要意义,但其监测结果的准确性受到用电负荷数据集规模与真实度的制约。现有公共数据集中样本数量与种类以及自建数据集的广泛性与真实性均有待提升。针对上述问题,该文提出一种可应用于非侵入式负荷监测的居民负荷数据模拟生成方法。首先,通过对采样得到的有限原始电气负荷数据进行规范化预处理及快速傅里叶变换计算,得出其动态谐波导纳参数;其次,提出导纳转移方法将动态导纳参数进行处理,将其约束至一/四象限内以便于仿真验证,利用处理后得出的各谐波次数下导纳与电源参数推导电气负荷谐波导纳数学模型;再次,搭建仿真模型以模拟生成此电气负荷的标准电流波形。通过与其他方法的比较,评估提出的方法具有在多场景中(从简单开关负荷到多阶段连续变化负荷、从微秒级周期电流到小时级长时间段过程电流、从单一种类负荷模拟到多种类负荷用电场景构建)均有良好拟合效果,对比现有数据生成方法,在拟真性、广泛性及应用范围上具有显著优势;最后,在动态参数中进一步引入服从概率分布的随机变量,以模拟实际负荷的随机误差,可生成计及实际误差的电气负荷区间电流,极大地提升了所生成数据的科学性与丰富性,可作为非侵入式负荷监测中数据集的可靠来源。

     

    Abstract: Non-invasive load monitoring (NILM) technology has great significance in advancing the intelligence of power system management and guiding users towards more rational electricity usage plans. However, the accuracy of its monitoring results is limited by the scale and authenticity of the electrical load datasets. In addition, the existing public datasets lack sufficient sample quantity and variety, and the comprehensiveness and authenticity of self-constructed datasets also need improvement. To address these issues, this paper proposes a method for simulating residential load data applicable to NILM. First, limited original electrical load data obtained from sampling are subjected to standardize preprocessing and fast Fourier transform (FFT) calculations to derive their dynamic harmonic admittance parameters. Then, an admittance transformation method is introduced to process the dynamic admittance parameters, constraining them within the first/fourth quadrant for easier simulation verification. After that, the processed admittance is utilized at various harmonic orders along with source parameters to deduce a mathematical model of electrical load harmonic admittance. Next, a simulation model is established to generate standard current waveforms for this electrical load. Compared with other methods, the proposed approach demonstrates satisfying fitting effects across multiple scenarios, ranging from simple on/off loads to multi-stage continuously varying loads, from microsecond-level periodic currents to hour-long duration processes, and from single-type load simulations to multi-type load usage scenario constructions. It shows significant merits over existing data generation methods in terms of fidelity, comprehensiveness, and scope of application. Finally, random variables following probability distributions are further introduced into the dynamic parameters to simulate the random errors of actual loads, enabling the generation of electrical load interval currents that account for practical errors, and effectively enhancing the scientific validity and richness of the generated data. This can serve as a reliable source of datasets for NILM.

     

/

返回文章
返回