罗保洋, 祝培旺, 吕洪坤, 来振亚, 丁历威, 帅威, 肖刚. 微型燃气轮机的动态建模与优化控制研究[J]. 中国电机工程学报, 2025, 45(1): 175-183. DOI: 10.13334/j.0258-8013.pcsee.231492
引用本文: 罗保洋, 祝培旺, 吕洪坤, 来振亚, 丁历威, 帅威, 肖刚. 微型燃气轮机的动态建模与优化控制研究[J]. 中国电机工程学报, 2025, 45(1): 175-183. DOI: 10.13334/j.0258-8013.pcsee.231492
LUO Baoyang, ZHU Peiwang, LYU Hongkun, LAI Zhenya, DING Liwei, SHUAI Wei, XIAO Gang. Dynamic Simulation and Optimization Control of Micro Gas Turbine[J]. Proceedings of the CSEE, 2025, 45(1): 175-183. DOI: 10.13334/j.0258-8013.pcsee.231492
Citation: LUO Baoyang, ZHU Peiwang, LYU Hongkun, LAI Zhenya, DING Liwei, SHUAI Wei, XIAO Gang. Dynamic Simulation and Optimization Control of Micro Gas Turbine[J]. Proceedings of the CSEE, 2025, 45(1): 175-183. DOI: 10.13334/j.0258-8013.pcsee.231492

微型燃气轮机的动态建模与优化控制研究

Dynamic Simulation and Optimization Control of Micro Gas Turbine

  • 摘要: 微型燃气轮机因其灵活性和快速响应能力,可作为综合能源系统中的灵活调度资源,填补因气象条件的随机性和间歇性带来的能量缺口,也可为分布式可再生能源电站的并网提供支撑。为解决微型燃气轮机在复杂系统中的控制问题,同时适应微燃机自身的强耦合、非线性和时变性特点,该文基于MATLAB/SIMULINK平台,搭建燃机动态模型,并提出一种自适应模型预测控制算法,通过引入模型在线修正、PI静差控制等方法,以解决线性模型难以准确调控非线性系统和全局控制问题。结果表明,构建的燃机模型在孤网模式和并网模式下的平均相对误差分别为0.08%和0.52%。提出的自适应模型预测控制算法在响应多能互补系统调度时平均相对误差相较比例积分微分(proportional-integral-derivative,PID)控制和模型预测控制(model predictive control,MPC)分别降低了36.67%和88.05%,在响应速度和控制精度方面均优于其他算法,具有优秀的控制性能,且展现出与调度算法很好的适配性,有较好的发展潜能。

     

    Abstract: Micro gas turbines, with their flexibility and rapid response capabilities, can serve as flexible dispatch resources in integrated energy systems, filling the energy gap caused by the randomness and intermittency of weather conditions and providing grid support for distributed renewable energy power plants. However, the conventional control methods struggle to maintain good global performance and lack the ability to deal with constrained problems. To solve this problem, a self-adaptive model predictive control (MPC) algorithm is proposed in this paper and a dynamic model of micro gas turbines based on the MATLAB/SIMULINK is built to verify the performance of algorithms. The results show that the average relative errors of the constructed model in standalone mode and grid-connected mode are 0.08% and 0.52%, respectively. The proposed algorithm reduces the average relative error by 36.67% and 88.05%, respectively, compared to proportional integration differentiation (PID) control and single linear model based MPC control when responding to multi-energy complementary system scheduling. With excellent control performance and good compatibility with scheduling algorithms, the new proposed algorithm showcases great development potential.

     

/

返回文章
返回