杨秀, 金煜, 顾丹珍, 唐乾尧, 熊雪君, 冯煜尧. 基于数据驱动的分布式光伏出力两阶段辨识[J]. 中国电机工程学报, 2024, 44(24): 9706-9717. DOI: 10.13334/j.0258-8013.pcsee.231426
引用本文: 杨秀, 金煜, 顾丹珍, 唐乾尧, 熊雪君, 冯煜尧. 基于数据驱动的分布式光伏出力两阶段辨识[J]. 中国电机工程学报, 2024, 44(24): 9706-9717. DOI: 10.13334/j.0258-8013.pcsee.231426
YANG Xiu, JIN Yu, GU Danzhen, TANG Qianyao, XIONG Xuejun, FENG Yuyao. Two-stage Identification of Distributed Photovoltaic Active Power Based on Data-driven[J]. Proceedings of the CSEE, 2024, 44(24): 9706-9717. DOI: 10.13334/j.0258-8013.pcsee.231426
Citation: YANG Xiu, JIN Yu, GU Danzhen, TANG Qianyao, XIONG Xuejun, FENG Yuyao. Two-stage Identification of Distributed Photovoltaic Active Power Based on Data-driven[J]. Proceedings of the CSEE, 2024, 44(24): 9706-9717. DOI: 10.13334/j.0258-8013.pcsee.231426

基于数据驱动的分布式光伏出力两阶段辨识

Two-stage Identification of Distributed Photovoltaic Active Power Based on Data-driven

  • 摘要: 近年来,户用分布式光伏发展迅猛,其不可观特性给电力部门对电网的规划控制以及用户用能管理带来巨大挑战。鉴于此,该文提出一种基于数据驱动的分布式光伏出力两阶段辨识方法。首先,对智能电表用电数据进行基于特征提取的聚类,以此确定光伏装机的日期范围,获得用户历史负荷信息;其次,提出一种基于数据驱动的分布式光伏出力辨识方法,将分布式光伏出力辨识问题转化为实际负荷缺失数据重建问题,在此基础上,充分考虑净负荷中隐含的光伏特征信息,修正光伏出力辨识结果,实现目标用户光伏出力的精细化辨识。仿真结果表明,与其他数据驱动的光伏分解方法相比,所提方法在标准均方根误差指标上降幅为1.40和0.12 kW,在平均绝对百分比误差上降幅为6.80%和1.36%,准确率增幅为6.00%和2.54%。

     

    Abstract: In recent years, household distributed photovoltaics have developed rapidly, and the unimpressive characteristics have brought great challenges to the power sector's planning and control of the power grid and the management of user energy consumption. In view of this, this paper proposes a two-stage identification method for distributed photovoltaic output based on missing data reconstruction. First, the net load data of smart meters is clustered based on feature extraction to determine the date range of photovoltaic installation and obtain the historical load information of users. Then, a distributed photovoltaic output identification method based on missing data reconstruction technology is proposed, which transforms the distributed photovoltaic output identification problem into the actual load missing data reconstruction problem. On this basis, the photovoltaic characteristic information hidden in the net load is fully considered, the photovoltaic output identification result is corrected, and the refined identification of the target user's photovoltaic output is realized. The simulation results show that compared with other data-driven PV decomposition methods, the proposed method decreases by 1.40 kW and 0.12 kW in the standard root mean square error index, 6.80% and 1.36% in the average absolute percentage error, and 6.00% and 2.54% in the accuracy, respectively.

     

/

返回文章
返回