林蔚青, 缪希仁, 陈静, 卢燕臻, 许勇, 江灏. 时空信息融合的堆芯自给能中子探测器故障检测与隔离方法[J]. 中国电机工程学报, 2024, 44(23): 9310-9322. DOI: 10.13334/j.0258-8013.pcsee.231307
引用本文: 林蔚青, 缪希仁, 陈静, 卢燕臻, 许勇, 江灏. 时空信息融合的堆芯自给能中子探测器故障检测与隔离方法[J]. 中国电机工程学报, 2024, 44(23): 9310-9322. DOI: 10.13334/j.0258-8013.pcsee.231307
LIN Weiqing, MIAO Xiren, CHEN Jing, LU Yanzhen, XU Yong, JIANG Hao. Fault Detection and Isolation for In-core Self-powered Neutron Detectors Using Spatial-temporal Information Fusion[J]. Proceedings of the CSEE, 2024, 44(23): 9310-9322. DOI: 10.13334/j.0258-8013.pcsee.231307
Citation: LIN Weiqing, MIAO Xiren, CHEN Jing, LU Yanzhen, XU Yong, JIANG Hao. Fault Detection and Isolation for In-core Self-powered Neutron Detectors Using Spatial-temporal Information Fusion[J]. Proceedings of the CSEE, 2024, 44(23): 9310-9322. DOI: 10.13334/j.0258-8013.pcsee.231307

时空信息融合的堆芯自给能中子探测器故障检测与隔离方法

Fault Detection and Isolation for In-core Self-powered Neutron Detectors Using Spatial-temporal Information Fusion

  • 摘要: 自给能中子探测器(self-powered neutron detector,SPND)作为新一代核电厂的重要核测设备,其健康状态关乎反应堆安全运行。鉴于现有故障检测方法侧重于时域分析以构建数据驱动模型,未充分考虑SPND在堆芯内的全局空间耦合关系,为此,该文提出一种时空信息融合的堆芯SPND故障检测与隔离方法。首先,结合SPND运行数据与堆内探测器组件布局,构建面向SPND故障检测的时空图数据;其次,结合图卷积网络-门控循环单元(graph convolution network-gate recurrent unit,GCN-GRU)与故障隔离(fault isolation,FI)策略,设计SPND实时故障检测模型;最后,利用某地区压水堆历史监测数据与模拟故障样本进行算例分析,表明该方法可有效融合整体SPND的时空联合信息以重构个体SPND的电流信号,进而准确检测与隔离故障SPND,且具有较好的精确性和普适性。

     

    Abstract: As the essential nuclear measurement equipment in new generation nuclear power plants, the self-powered neutron detector (SPND) plays a crucial role in ensuring the safe operation of reactors. The existing fault detection methods focus on time-domain analysis to build data-driven models, without leveraging the spatial coupling relationship of neutron flux in the reactor core. Therefore, an in-core SPND fault detection and isolation method integrating spatial-temporal information is proposed. First, the spatial-temporal graph data for SPND fault detection are established by combining SPND data with the layout of detector components within the reactor. Then, a real-time SPND fault detection model is designed using the graph convolution network-gate recurrent unit (GCN-GRU) and fault isolation (FI) strategy. Finally, using historical data and simulated fault samples from a pressurized water reactor, case analysis demonstrates that the method effectively fuses the spatial-temporal joint information of the overall SPNDs to reconstruct the current signals of individual SPNDs. The method can accurately detect and isolate faulty SPNDs, which exhibits higher accuracy and universality.

     

/

返回文章
返回