孙亦皓, 刘浩, 胡天宇, 王飞. 基于时空关联特征与GCN-FEDformer的风速短期预测方法[J]. 中国电机工程学报, 2024, 44(21): 8496-8506. DOI: 10.13334/j.0258-8013.pcsee.231140
引用本文: 孙亦皓, 刘浩, 胡天宇, 王飞. 基于时空关联特征与GCN-FEDformer的风速短期预测方法[J]. 中国电机工程学报, 2024, 44(21): 8496-8506. DOI: 10.13334/j.0258-8013.pcsee.231140
SUN Yihao, LIU Hao, HU Tianyu, WANG Fei. Short-term Wind Speed Forecasting Based on GCN and FEDformer[J]. Proceedings of the CSEE, 2024, 44(21): 8496-8506. DOI: 10.13334/j.0258-8013.pcsee.231140
Citation: SUN Yihao, LIU Hao, HU Tianyu, WANG Fei. Short-term Wind Speed Forecasting Based on GCN and FEDformer[J]. Proceedings of the CSEE, 2024, 44(21): 8496-8506. DOI: 10.13334/j.0258-8013.pcsee.231140

基于时空关联特征与GCN-FEDformer的风速短期预测方法

Short-term Wind Speed Forecasting Based on GCN and FEDformer

  • 摘要: 精准预测风速可以提高风电功率预测的准确性,现有风速预测方法未充分挖掘相邻多风场之间的空间相关性,在具备多风场数据及其相关性较强条件下风速预测准确性尚有较大提升空间。为了充分利用空间相关性信息,提出一种基于图卷积网络(graph convolution networks,GCN)和频率增强分解Transformer (frequency enhanced decomposed transformer,FEDformer)的风速预测模型,即GFformer,GCN用于提取风速空间特征,FEDformer用于学习时序特征。同时,还构造一种从强度、时滞2个维度分别表征相关关系的复数邻接矩阵,使得GFformer能够更全面地捕捉相邻风电场之间风速的时空相关性,进一步提高风速预测的准确性。在具备25个风电场数据的案例研究中,GFformer相比其他对比模型表现更优。

     

    Abstract: Accurately forecasting wind speed can enhance the accuracy of wind power forecasting. However, existing wind speed forecasting methods mostly ignore the spatial correlation between neighboring wind farms. There is significant potential for improving wind speed forecasting accuracy when abundant data from multiple wind farms and their strong interdependencies are available. To fully exploit the spatial correlation information, we propose a novel wind speed forecasting model based on GCN and frequency-enhanced decomposed transformer (FEDformer), i.e., GFformer. The GCN is utilized for extracting spatial features of wind speed, while the FEDformer is employed for learning temporal features. Moreover, this paper constructs a complex adjacency matrix that characterizes the correlation relationship from two dimensions: intensity and temporal lag. This enables GFformer to capture the spatiotemporal correlations of wind speed between neighboring wind farms more comprehensively, thereby further improving the accuracy of wind speed forecasting. In a case study with a dataset consisting of 25 wind farms, GFformer outperforms other benchmark models.

     

/

返回文章
返回