黄怡涵, 郝玲, 陈磊, 徐飞, 徐达睿, 孙国辉, 姜楠, 程仁静. 适用于多种一次调频技术及工况变化的抽汽凝汽式汽轮机数学模型[J]. 中国电机工程学报, 2024, 44(15): 6065-6077. DOI: 10.13334/j.0258-8013.pcsee.231126
引用本文: 黄怡涵, 郝玲, 陈磊, 徐飞, 徐达睿, 孙国辉, 姜楠, 程仁静. 适用于多种一次调频技术及工况变化的抽汽凝汽式汽轮机数学模型[J]. 中国电机工程学报, 2024, 44(15): 6065-6077. DOI: 10.13334/j.0258-8013.pcsee.231126
HUANG Yihan, HAO Ling, CHEN Lei, XU Fei, XU Darui, SUN Guohui, JIANG Nan, CHENG Renjing. Mathematical Model of Extraction Condensing Steam Turbine Suitable for Multiple Primary Frequency Regulation Technologies and Various Operating Conditions[J]. Proceedings of the CSEE, 2024, 44(15): 6065-6077. DOI: 10.13334/j.0258-8013.pcsee.231126
Citation: HUANG Yihan, HAO Ling, CHEN Lei, XU Fei, XU Darui, SUN Guohui, JIANG Nan, CHENG Renjing. Mathematical Model of Extraction Condensing Steam Turbine Suitable for Multiple Primary Frequency Regulation Technologies and Various Operating Conditions[J]. Proceedings of the CSEE, 2024, 44(15): 6065-6077. DOI: 10.13334/j.0258-8013.pcsee.231126

适用于多种一次调频技术及工况变化的抽汽凝汽式汽轮机数学模型

Mathematical Model of Extraction Condensing Steam Turbine Suitable for Multiple Primary Frequency Regulation Technologies and Various Operating Conditions

  • 摘要: 火电机组是目前电力系统中重要的调频资源,其一次调频能力与汽轮机动态密切相关,但现有汽轮机动态数学模型无法准确反映火电机组在多种一次调频技术以及工况变化情况下的一次调频能力。为准确描述火电机组真实的一次调频动态,该文对汽轮机本体、回热抽汽管道及回热加热器的动态耦合特性进行机理分析,建立适用于主汽阀调节、凝结水节流和高加给水旁路调频技术的汽轮机动态模型;基于机组结构数据及分布式控制系统实测数据,提出跟随工况变化的模型参数在线确定方法;最后,以实际600 MW机组为例进行模型验证与仿真分析。结果表明,汽轮机输出功率会受到汽轮机本体和回热系统动态耦合特性的重要影响,且不同工况下机组一次调频能力存在明显差异。该文模型能更准确地描述不同一次调频技术方案及不同运行工况下汽轮机的动态响应特性。

     

    Abstract: Thermal power units play a critical role as primary frequency regulation(PFR) resources in new power system, with their PFR performance heavily influenced by the dynamics of steam turbines. However, existing dynamic mathematical models of steam turbines fail to accurately assess the PFR capability of thermal power units under various PFR technologies and operating conditions. To precisely assess the PFR dynamics of thermal power units, a steam turbine model is established in this paper by analyzing the dynamic coupling characteristics of the turbine body, regenerative extraction pipes, and regenerative heaters. This model is well-suited for analyzing PFR technologies such as main steam valve adjustment, condensate throttling, and feedwater bypass. Additionally, an online parameter identification method based on structural data and measured data from the distributed control system is proposed. Finally, the actual 600 MW units are taken as examples for model verification and simulation analysis. The results indicate that the output power is greatly affected by the dynamic coupling characteristics of the turbine body and regenerative system, and the PFR capability of the unit varies significantly under different operating conditions. The proposed model can describe the dynamic response characteristics of steam turbines under various PFR technologies and operating conditions more accurately.

     

/

返回文章
返回