马悦, 王哲, 曹梦龙, 姜悦茂, 纪玉龙, 韩凤翚. 固体氧化物燃料电池和分部加热式S-CO2循环联合发电系统设计与分析[J]. 中国电机工程学报, 2024, 44(19): 7706-7716. DOI: 10.13334/j.0258-8013.pcsee.231116
引用本文: 马悦, 王哲, 曹梦龙, 姜悦茂, 纪玉龙, 韩凤翚. 固体氧化物燃料电池和分部加热式S-CO2循环联合发电系统设计与分析[J]. 中国电机工程学报, 2024, 44(19): 7706-7716. DOI: 10.13334/j.0258-8013.pcsee.231116
MA Yue, WANG Zhe, CAO Menglong, JIANG Yuemao, JI Yulong, HAN Fenghui. Design and Analysis of Solid Oxide Fuel Cell and Partial Heating S-CO2 Combined Power Generation System[J]. Proceedings of the CSEE, 2024, 44(19): 7706-7716. DOI: 10.13334/j.0258-8013.pcsee.231116
Citation: MA Yue, WANG Zhe, CAO Menglong, JIANG Yuemao, JI Yulong, HAN Fenghui. Design and Analysis of Solid Oxide Fuel Cell and Partial Heating S-CO2 Combined Power Generation System[J]. Proceedings of the CSEE, 2024, 44(19): 7706-7716. DOI: 10.13334/j.0258-8013.pcsee.231116

固体氧化物燃料电池和分部加热式S-CO2循环联合发电系统设计与分析

Design and Analysis of Solid Oxide Fuel Cell and Partial Heating S-CO2 Combined Power Generation System

  • 摘要: 固体氧化物燃料电池(solid oxide fuel cell,SOFC)与余热回收相结合可进一步提高系统能量转换效率。该文设计一种SOFC与分部加热式超临界二氧化碳(partial heating supercritical CO2 Brayton cycle,PHSCBC)动力循环集成系统,SOFC系统的出口废气作为高温热源,驱动PHSCBC进行联合发电。建立系统的电化学模型和热力学模型,对系统的能量和㶲进行综合评价,并通过参数分析,研究汽碳比、燃料流量、压缩机进口温度和压力以及夹点温差对联合发电系统性能的影响。对系统性能进行优化,发现当系统燃料流量为0.54 mol/s、空气流量为6.19 mol/s,可达到净发电功率、发电效率、㶲效率分别为260.08 kW、61.20%、56.54%,其中提高燃料流量将显著提高系统发电效率。所提出的混合系统具有高效、低成本和清洁的发电和供热性能,是一种具有实际应用前景的先进能量转换技术。

     

    Abstract: The combination of solid oxide fuel cell (SOFC) and waste heat recovery technology can further improve the energy conversion efficiency of the system. In this study, a hybrid system combining SOFCs with a partial heating supercritical CO2 Brayton cycle (PHSCBC) is designed, where the exhaust gas from the SOFC system serves as a high-temperature heat source to drive the PHSCBC for co-generation. Electrochemical and thermodynamic models are established to comprehensively evaluate the energy and exergy of the integrated system. Through parameter analysis, the impact of the steam-to-carbon ratio, fuel flow rate, compressor inlet temperature and pressure, and pinch point temperature difference on the performance of the co-generation system is investigated. The system performance is optimized, and it is found that with a fuel flow rate of 0.54 mol/s and an air flow rate of 6.19 mol/s, the net power output, electrical efficiency, and exergy efficiency can reach 260.08 kW, 61.20%, and 56.54%, respectively. Increasing the fuel flow rate has proven beneficial in significantly enhancing the system's electrical efficiency. The proposed hybrid system demonstrates efficient, cost-effective, and clean co-generation capabilities, making it a promising advanced energy conversion technology with practical application prospects.

     

/

返回文章
返回