程雄, 戴鹏, 钟浩, 李咸善, 李文武. 考虑综合相似性度量的光伏典型出力场景聚类方法[J]. 中国电机工程学报, 2024, 44(21): 8462-8474. DOI: 10.13334/j.0258-8013.pcsee.231072
引用本文: 程雄, 戴鹏, 钟浩, 李咸善, 李文武. 考虑综合相似性度量的光伏典型出力场景聚类方法[J]. 中国电机工程学报, 2024, 44(21): 8462-8474. DOI: 10.13334/j.0258-8013.pcsee.231072
CHENG Xiong, DAI Peng, ZHONG Hao, LI Xianshan, LI Wenwu. Photovoltaic Typical Output Scenario Clustering Method Considering Comprehensive Similarity Measurement[J]. Proceedings of the CSEE, 2024, 44(21): 8462-8474. DOI: 10.13334/j.0258-8013.pcsee.231072
Citation: CHENG Xiong, DAI Peng, ZHONG Hao, LI Xianshan, LI Wenwu. Photovoltaic Typical Output Scenario Clustering Method Considering Comprehensive Similarity Measurement[J]. Proceedings of the CSEE, 2024, 44(21): 8462-8474. DOI: 10.13334/j.0258-8013.pcsee.231072

考虑综合相似性度量的光伏典型出力场景聚类方法

Photovoltaic Typical Output Scenario Clustering Method Considering Comprehensive Similarity Measurement

  • 摘要: 场景聚类是描述不确定性光伏典型出力特性的有效途径之一,如何度量波动繁杂的光伏发电曲线相似性以及生成具有代表性的光伏出力场景是目前亟需解决的问题。为此,提出一种考虑综合相似性度量的光伏典型出力场景聚类方法,其基本思路是首先考虑光伏发电的电量大小、形态趋势、波动位置相似性,得到适用于光伏发电曲线的综合相似性度量距离;其次将形态质心作为优化问题求解,再用同倍比放大法得到兼顾电量和形态的实际质心,针对传统聚类算法在初始中心确定等方面的不足,以二十四节气为区间提出基于改进K-means算法的光伏典型场景集生成模型;最后构建光伏发电场景集指标评价体系,以熵权Topsis法对典型出力场景集进行综合评价。云南某地装机50 MW的光伏电站2018—2020年算例结果表明:该文算法能准确划分和提取典型光伏出力场景,且以节气为区间生成的典型场景集在波动和电量指标上都有较好的表现,证明算法的有效性。

     

    Abstract: Cluster analysis of photovoltaic (PV) output scenarios is one of the effective ways to describe the uncertain typical output characteristics of PV systems. How to measure the similarity of complex and fluctuating PV power generation curves and generate representative PV output scenarios is currently a pressing issue. A PV typical output scenario clustering method considering comprehensive similarity measurement is proposed. The basic approach is to first consider the similarity in terms of the quantity, trend, and fluctuation position of PV power generation, in order to obtain a comprehensive similarity distance measurement suitable for the PV power generation curve. Secondly, the shape centroid is used as an optimization problem to obtain the actual centroid that balances both the amount of electricity and the shape by using the same multiple amplification method. To address the shortcomings of traditional clustering algorithms in determining initial centers, a PV typical scenario set generation model based on an improved K-means algorithm is proposed using the 24 solar terms as intervals. Finally, a PV power generation scenario set index evaluation system is constructed, and the Entropy-weighted Topsis method is used to comprehensively evaluate the typical output scenario set. The results of a PV power station with an installed capacity of 50MW in a certain area of Yunnan from 2018 to 2020 indicate that the proposed algorithm can accurately classify and extract typical PV output scenarios. The typical scenario set generated based on solar terms shows good performance in terms of fluctuations and electricity indicators, which proves the effectiveness of the algorithm.

     

/

返回文章
返回