韩宇超, 同向前, 邓亚平. 基于概率密度估计与时序Transformer网络的风功率日前区间预测[J]. 中国电机工程学报, 2024, 44(23): 9285-9295. DOI: 10.13334/j.0258-8013.pcsee.231063
引用本文: 韩宇超, 同向前, 邓亚平. 基于概率密度估计与时序Transformer网络的风功率日前区间预测[J]. 中国电机工程学报, 2024, 44(23): 9285-9295. DOI: 10.13334/j.0258-8013.pcsee.231063
HAN Yuchao, TONG Xiangqian, DENG Yaping. Probabilistic Distribution Estimation and Temporal Transformer-based Interval Prediction in Day-ahead Wind Power Prediction[J]. Proceedings of the CSEE, 2024, 44(23): 9285-9295. DOI: 10.13334/j.0258-8013.pcsee.231063
Citation: HAN Yuchao, TONG Xiangqian, DENG Yaping. Probabilistic Distribution Estimation and Temporal Transformer-based Interval Prediction in Day-ahead Wind Power Prediction[J]. Proceedings of the CSEE, 2024, 44(23): 9285-9295. DOI: 10.13334/j.0258-8013.pcsee.231063

基于概率密度估计与时序Transformer网络的风功率日前区间预测

Probabilistic Distribution Estimation and Temporal Transformer-based Interval Prediction in Day-ahead Wind Power Prediction

  • 摘要: 随着风电机组装机容量逐年攀升,风力发电已经成为电力系统重要组成部分。由于风具有间歇性的属性,风功率强烈的波动性影响着电力系统的频率稳定性。因此,准确评估风电功率波动范围对电力系统的稳定运行和调度起着重要作用。目前,区间预测大多采用循环神经网络及其衍生模型,这一模型架构限制了网络的深度,并且传统区间预测采用上下限预测方案,受到损失函数超参数以及初始化方式等的影响,预测精度较低且不稳定。针对这些问题,该文提出一种基于概率密度函数参数估计的区间预测方案,通过概率密度分布函数可以给出确定性以及区间预测结果;同时,提出一种时序Transformer网络,在增强局部特征提取能力的同时保留了Transformer的全局视野。通过在公开数据集中与对比模型进行对比,结果表明,该文模型不论是区间预测还是确定性预测都能提供优于基线的预测精度。

     

    Abstract: As the proportion of wind power generation in the power system continues to rise, its strong volatility affects the frequency stability of the power system. Therefore, accurate evaluation of the fluctuation range of wind power plays an important role in the stable operation and scheduling of the power system. Currently, interval forecasting mostly uses recurrent neural networks, which limits the depth of the model. Additionally, traditional interval forecasting adopts upper and lower limit prediction methods, which have the disadvantages of difficult adjustment of loss function hyperparameters and limited initialization methods. This paper proposes an interval prediction scheme based on probability density function parameter estimation to address these issues. By utilizing probability density distribution functions, the scheme provides both deterministic and interval prediction results. Meanwhile, a temporal Transformer network is proposed, which can enhance local feature extraction capabilities while retaining the Transformer's global perspective. Compared to the baseline model in a public dataset, the results show that both the model and the prediction scheme in this paper can provide better prediction accuracy for both interval and deterministic predictions.

     

/

返回文章
返回