唐振浩, 隋梦璇, 曹生现. 基于组合时域特征提取和Stacking集成学习的燃煤锅炉NOx排放浓度预测[J]. 中国电机工程学报, 2024, 44(16): 6551-6564. DOI: 10.13334/j.0258-8013.pcsee.230940
引用本文: 唐振浩, 隋梦璇, 曹生现. 基于组合时域特征提取和Stacking集成学习的燃煤锅炉NOx排放浓度预测[J]. 中国电机工程学报, 2024, 44(16): 6551-6564. DOI: 10.13334/j.0258-8013.pcsee.230940
TANG Zhenhao, SUI Mengxuan, CAO Shengxian. Prediction of NOx Emission Concentration From Coal-fired Boilers Based on Combined Time-domain Feature Extraction and Stacking Ensemble Learning[J]. Proceedings of the CSEE, 2024, 44(16): 6551-6564. DOI: 10.13334/j.0258-8013.pcsee.230940
Citation: TANG Zhenhao, SUI Mengxuan, CAO Shengxian. Prediction of NOx Emission Concentration From Coal-fired Boilers Based on Combined Time-domain Feature Extraction and Stacking Ensemble Learning[J]. Proceedings of the CSEE, 2024, 44(16): 6551-6564. DOI: 10.13334/j.0258-8013.pcsee.230940

基于组合时域特征提取和Stacking集成学习的燃煤锅炉NOx排放浓度预测

Prediction of NOx Emission Concentration From Coal-fired Boilers Based on Combined Time-domain Feature Extraction and Stacking Ensemble Learning

  • 摘要: 为提高火电厂锅炉出口NOx排放浓度的预测精度,提出一种考虑组合时域特征的Stacking集成学习模型。首先,为挖掘数据深层信息,采用时序分析、完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise analysis,CEEMDAN)和统计学计算数据标准差、偏度等特征的方法进行组合时域特征提取以构建重构数据;其次,考虑到重构数据中存在的冗余变量对模型的精度有所影响,利用遗传算法(genetic algorithm,GA)对重构数据进行特征降维;最后,为充分发挥各个模型的优势以提高模型的预测精度,构建以极限学习机(extreme learning machines,ELM)、深度神经网络(deep neural networks,DNN)、多层感知器(multilayer perceptron,MLP)、极限梯度提升算法(extreme gradient boosting,XGBoost)为基模型和以回声状态网络(echo state network,ESN)为元模型的Stacking集成学习NOx排放浓度预测模型。实验结果表明:该预测模型在不同数据集下都有着不错的预测效果,预测误差均小于2%,能够对锅炉NOx排放浓度实现精准预测。

     

    Abstract: In order to improve the prediction accuracy of NOx emission concentration at boiler outlet of thermal power plant, this paper proposes a Stacking ensemble learning model via combined time domain features. First, with the aim of mining the deep information of the data, time series analysis, CEEMDAN and statistical calculation of data standard deviation, skewness and other characteristics are used for combination, and domain feature extraction to construct the reconstructed data. Then, considering the influence of redundant variables in the reconstructed data on the accuracy of the model, the GA is used to reduce the feature dimension of the reconstructed data. Finally, in order to make the most of the advantages of each model to improve the prediction accuracy of the model, the paper constructs a Stacking integrated learning NOx emission concentration prediction model, utilizing ELM, DNN, MLP, and XGBoost as base models, and ESN as the meta-model. The experimental results show that the prediction model has a good prediction effect under different data sets, and the prediction error is less than 2%, which can accurately predict the NOx emission concentration of the boiler.

     

/

返回文章
返回