贺兴, 唐跃中, 韩烨宸, 高扬, 陈赟, 黄兴德, 艾芊. 基于数字孪生与元宇宙的能源互联网认知系统论(三):复杂系统群智调控理论及其框架[J]. 中国电机工程学报, 2024, 44(24): 9546-9558. DOI: 10.13334/j.0258-8013.pcsee.230889
引用本文: 贺兴, 唐跃中, 韩烨宸, 高扬, 陈赟, 黄兴德, 艾芊. 基于数字孪生与元宇宙的能源互联网认知系统论(三):复杂系统群智调控理论及其框架[J]. 中国电机工程学报, 2024, 44(24): 9546-9558. DOI: 10.13334/j.0258-8013.pcsee.230889
HE Xing, TANG Yuezhong, HAN Yechen, GAO Yang, CHEN Yun, HUANG Xingde, AI Qian. System Theory Study on Situation Awareness of Energy Internet of Things Based on Digital Twins and Metaverse (Ⅲ): Theory and Framework for Energy Scheduling and Management Considering Swarm Intelligence[J]. Proceedings of the CSEE, 2024, 44(24): 9546-9558. DOI: 10.13334/j.0258-8013.pcsee.230889
Citation: HE Xing, TANG Yuezhong, HAN Yechen, GAO Yang, CHEN Yun, HUANG Xingde, AI Qian. System Theory Study on Situation Awareness of Energy Internet of Things Based on Digital Twins and Metaverse (Ⅲ): Theory and Framework for Energy Scheduling and Management Considering Swarm Intelligence[J]. Proceedings of the CSEE, 2024, 44(24): 9546-9558. DOI: 10.13334/j.0258-8013.pcsee.230889

基于数字孪生与元宇宙的能源互联网认知系统论(三):复杂系统群智调控理论及其框架

System Theory Study on Situation Awareness of Energy Internet of Things Based on Digital Twins and Metaverse (Ⅲ): Theory and Framework for Energy Scheduling and Management Considering Swarm Intelligence

  • 摘要: 能源互联网现行调控模式主要面向大负荷、大火电机组等能量大户,不适应其分布式能源资源(distributed energy resources,DER)渗透率不断提升的趋势。该文旨在建立多DER主体群智调控框架,通过在虚拟空间系统性地揭示并利用DER的聚合涌现规律,激发其主观能动性,从而开启调度新模式。具体而言,拟以系统论、数据密集型科学发现范式(第四范式)等为指导思想,以虚拟孪生、大数据分析、机器学习与人机混合智能等为内核,以数字孪生、虚拟仿真推演、高维统计、时空数据分析、深度神经网络、人在回路与知识嵌入等为技术手段,设计并逐步完善“虚拟孪生+数据科学+系统论+第四范式”的系统性框架。该框架旨在通过数据贯通、数业融合、虚实交互等手段实现数据赋能提智工程系统,最终形成复杂系统调度新理论。

     

    Abstract: The rapid growth of distributed energy resources (DER) in energy internet of things (EIoT) poses a challenge to traditional scheduling modes, which mainly cater to large-scale loads and generators. In response, our work proposes a novel framework that leverages swarm intelligence arising from the aggregation behavior of diverse DERs in the virtual space. Our framework integrates virtual twins, data science, systems theory, and 4th-Paradigm (data-intensive scientific discovery paradigm), to facilitate a cutting-edge energy scheduling approach. Concretely, we use system theory and 4th-Paradigm as the guiding ideology; we set big data analysis, machine learning, and human–machine hybrid intelligence as the core; we take digital twin, virtual simulation, high-dimensional statistics, spatial-temporal data analysis, human-in-the-loop, and knowledge embedding as the technical means. Our goal is to achieve data empowerment and intelligence improvement through seamless data connectivity, virtual-real interaction, ultimately leading to the development of a new theory on complex system scheduling.

     

/

返回文章
返回