丛浩熹, 周阳, 乔力盼, 姬振宇, 王健, 任瀚文, 李庆民. 基于分子动力学模拟的铜-石墨烯复合材料耐烧蚀性能提升方法[J]. 中国电机工程学报, 2024, 44(6): 2496-2506. DOI: 10.13334/j.0258-8013.pcsee.230410
引用本文: 丛浩熹, 周阳, 乔力盼, 姬振宇, 王健, 任瀚文, 李庆民. 基于分子动力学模拟的铜-石墨烯复合材料耐烧蚀性能提升方法[J]. 中国电机工程学报, 2024, 44(6): 2496-2506. DOI: 10.13334/j.0258-8013.pcsee.230410
CONG Haoxi, ZHOU Yang, QIAO Lipan, JI Zhenyu, WANG Jian, REN Hanwen, LI Qingmin. Molecular Dynamics Simulation Study on the Method of Improving the Ablation Resistance of Graphene Doped Copper Guide[J]. Proceedings of the CSEE, 2024, 44(6): 2496-2506. DOI: 10.13334/j.0258-8013.pcsee.230410
Citation: CONG Haoxi, ZHOU Yang, QIAO Lipan, JI Zhenyu, WANG Jian, REN Hanwen, LI Qingmin. Molecular Dynamics Simulation Study on the Method of Improving the Ablation Resistance of Graphene Doped Copper Guide[J]. Proceedings of the CSEE, 2024, 44(6): 2496-2506. DOI: 10.13334/j.0258-8013.pcsee.230410

基于分子动力学模拟的铜-石墨烯复合材料耐烧蚀性能提升方法

Molecular Dynamics Simulation Study on the Method of Improving the Ablation Resistance of Graphene Doped Copper Guide

  • 摘要: 直线推进机构的轨道因滑动电弧烧蚀严重易导致发射失败,研究新的耐烧蚀金属材料是提高发射效率的关键,目前鲜有性能优异的铜-石墨烯复合材料(CuGr)在极端工况下滑动电弧烧蚀的研究。该文对石墨烯层叠式分布CuGr模型进行分子动力学模拟,揭示模拟烧蚀中模型表层温度和材料微观结构的演变规律,并提出石墨烯在材料中合适的掺杂方式。结果表明:石墨烯质量分数越高,层数越少,CuGr导热性能越好。石墨烯能有效的减少轰击最大侵入距离。基体中石墨烯也可阻挡位错深入,不引起反尺寸效应时石墨烯层数越多,质量分数越大,应变残留深度越小。石墨烯可以降低最终侵蚀坑的深度和减少基体材料的质量损失,CuGr模型的侵蚀坑深度类似,质量损失方面各模型相差较小但随着层数增加呈现减小趋势,且都优于Cu模型。综合对比模拟结果,效果最优的是石墨烯6层分布CuGr1%。上述结果可揭示铜-石墨烯复合材料耐烧蚀作用规律和微观机理,为制备耐烧蚀性能更高的CuGr材料提供理论依据和技术支持。

     

    Abstract: Linear propulsion mechanisms suffer from track erosion due to sliding electric arcs, which can lead to launch failures. Therefore, researching new arc-resistant metal material is crucial for improving launch efficiency. However, few studies have tested the excellent performance of copper- graphene composite materials (CuGr) under extreme sliding arc erosion conditions. Through the molecular dynamics simulation of the constructed graphene layered distributed CuGr model, this paper reveals the evolution of surface temperature and microscopic material structure during erosion simulation, and proposes an appropriate doped method for graphene in the material. Results show that as the mass fraction of graphene increases and the number of layers decreases, the thermal conductivity of CuGr improves. Graphene effectively reduces the maximum penetration distance. Graphene in the base material also can block dislocation penetration, reducing strain residual depth as the number of layers and mass fraction increase without causing reverse size effects. Graphene can reduce the final erosion pit depth and minimize substrate material mass loss. The depth of the erosion pit of CuGr model is similar. The mass loss of all models has little difference but decreases with the increase of layers. The results are all better than that of Cu model. By comparing the simulation results, the optimal choice is six-layer CuGr1%. These findings reveal the rules and microscopic mechanisms of arc erosion resistance in copper-graphene composite materials, providing theoretical support and technical guidance for developing higher- performance CuGr materials.

     

/

返回文章
返回