曾鑫, 张帅, 白晗, 章程, 邵涛. 基于原子光谱Stark展宽高压放电等离子体电子密度计算[J]. 中国电机工程学报, 2024, 44(11): 4579-4588. DOI: 10.13334/j.0258-8013.pcsee.230256
引用本文: 曾鑫, 张帅, 白晗, 章程, 邵涛. 基于原子光谱Stark展宽高压放电等离子体电子密度计算[J]. 中国电机工程学报, 2024, 44(11): 4579-4588. DOI: 10.13334/j.0258-8013.pcsee.230256
ZENG Xin, ZHANG Shuai, BAI Han, ZHANG Cheng, SHAO Tao. Method for Calculating Plasma Electron Density Based on Stark Broadening of Atomic Spectrum[J]. Proceedings of the CSEE, 2024, 44(11): 4579-4588. DOI: 10.13334/j.0258-8013.pcsee.230256
Citation: ZENG Xin, ZHANG Shuai, BAI Han, ZHANG Cheng, SHAO Tao. Method for Calculating Plasma Electron Density Based on Stark Broadening of Atomic Spectrum[J]. Proceedings of the CSEE, 2024, 44(11): 4579-4588. DOI: 10.13334/j.0258-8013.pcsee.230256

基于原子光谱Stark展宽高压放电等离子体电子密度计算

Method for Calculating Plasma Electron Density Based on Stark Broadening of Atomic Spectrum

  • 摘要: 基于原子光谱Stark展宽法是计算等离子体电子密度最主要的方法之一,然而该方法计算步骤复杂、参量繁多,常常采用简化方法进行计算。针对特定谱线的简化处理可能会显著影响电子密度的计算结果。为提升计算的准确性,该文基于非简化和细致的Stark展宽计算原理设计和开发等离子体电子密度分析方法和程序。基本思路是采用复误差函数从光谱的Voigt线型反卷积分离Gaussian展宽和Lorentzian展宽,基于谱线和环境参数计算各个展宽后分离出Stark展宽,从而获得相应条件下的电子密度。通过上述方法,计算微波等离子体射流、脉冲介质阻挡放电和脉冲火花放电的电子密度分别为1014、1015和1017 cm−3量级,并选择不同谱线交叉验证发现不同放电形式时电子密度计算的准确性差异较大。通过误差分析发现温度、气压等环境参数和原子秉性对电子密度估算均有影响,而考虑范德瓦尔兹展宽可显著提升电子密度计算的准确性。

     

    Abstract: The Stark broadening method based on the atomic spectrum is considered one of the most crucial techniques for determining plasma electron density. However, this method is intricate and it involves numerous parameters. Simplified approaches are often employed for calculation. The accuracy of electron density is reduced using simplified methods. To improve the accuracy of calculation, this paper designs and develops a method and a program for electron density analysis based on a non-simplified and precise method of calculating Stark broadening. The basic idea is to separate the Gaussian broadening and Lorentzian broadening from the Voigt line of spectrum by using the complex error function and separate the Stark broadening after fine calculation of each broadening component based on spectral lines and environmental parameters, so as to obtain the electron density under corresponding conditions. The electron densities obtained by measuring microwave plasma jet, pulsed dielectric barrier discharge, and pulsed spark discharge are on the order of 1014, 1015, and 1017 cm−3, respectively. It is found that the accuracy of electron density calculation varies greatly when different discharge forms are selected. Through error analysis, it is found that environmental parameters such as temperature, pressure, and atomic properties all have effects on electron density estimation, and considering van der Waals broadening can significantly improve the accuracy of electron density calculation.

     

/

返回文章
返回