冯阳, 渠广昊, 李盛涛. 氢键调控提升聚硫脲介电储能特性[J]. 中国电机工程学报, 2024, 44(9): 3360-3370. DOI: 10.13334/j.0258-8013.pcsee.223363
引用本文: 冯阳, 渠广昊, 李盛涛. 氢键调控提升聚硫脲介电储能特性[J]. 中国电机工程学报, 2024, 44(9): 3360-3370. DOI: 10.13334/j.0258-8013.pcsee.223363
FENG Yang, QU Guanghao, LI Shengtao. Regulation of Hydrogen Bonding Interactions for Improving Dielectric Energy Storage Characteristics of Polythioureas[J]. Proceedings of the CSEE, 2024, 44(9): 3360-3370. DOI: 10.13334/j.0258-8013.pcsee.223363
Citation: FENG Yang, QU Guanghao, LI Shengtao. Regulation of Hydrogen Bonding Interactions for Improving Dielectric Energy Storage Characteristics of Polythioureas[J]. Proceedings of the CSEE, 2024, 44(9): 3360-3370. DOI: 10.13334/j.0258-8013.pcsee.223363

氢键调控提升聚硫脲介电储能特性

Regulation of Hydrogen Bonding Interactions for Improving Dielectric Energy Storage Characteristics of Polythioureas

  • 摘要: 为理解氢键对聚硫脲(polythiourea,PTU)介电储能特性的影响,该文采用实验和分子模拟方法,研究脂环族PTU(AcPTU)和芳香族PTU(ArPTU)中氢键作用模式和强度对介电常数、击穿场强和储能特性的影响。利用红外光谱和核磁共振氢谱表征化学组成和分子构型,利用宽频介电谱、击穿和电滞回线测试获得介电储能特性,基于H-N公式提取偶极极化特征参数,利用热刺激去极化电流法提取了陷阱深度,采用Multiwfn软件识别氢键作用模式和强度。结果显示,氢键作用模式和强度可以通过改变偶极极化和陷阱特性影响介电性能。脂环结构可以增多由反式/反式构型硫脲组装成的双氢键阵列,增强其介电松弛强度,进而提高介电常数;苯环结构可以增强π氢键数目和作用强度,加深由苯环碳原子和硫原子等氢键受体贡献的深陷阱能级,进而提高击穿场强。AcPTU具有高介电常数,归因于脂环结构增强了双氢键阵列的介电松弛强度;ArPTU的击穿场强高达855 MV/m,是因为苯环结构强化了氢键的电荷捕获效应。此外,当电场强度为300 MV/m时,AcPTU的储能密度和效率分别达到2.62 J/cm3和93.31%。该研究为提升本征型聚合物介电储能特性提供了理论依据。

     

    Abstract: To understand the mechanism of H-bonding interactions on dielectric energy storage characteristics of polythiourea (PTU), the effects of H-bonding patterns and strength on dielectric constant, breakdown strength and energy density are investigated for the alicyclic PTU (AcPTU) and aromatic PTU (ArPTU) based on experiments and molecular simulations. Their chemical compositions and conformations are characterized by infrared and nuclear magnetic resonance spectra. The dielectric energy storage characteristics are obtained from broadband dielectric spectra, breakdown strength and D-E hysteresis loops. The dielectric relaxation strength of the dipole polarization is extracted based on the H-N formula and the trap depth is achieved by thermal stimulus decurrent method. The H-bonding patterns and strength are identified and analyzed by the Multiwfn software. The experimental and simulation results show that the H-bonding patterns and strength affect the dielectric properties by changing the dipole polarization and trap characteristics. The alicyclic structure increases the dihydrogen-bonding arrays that are assembled from trans/trans conformational thioureas. The dihydrogen-bonding arrays enhance the dielectric relaxation strength and thus increase the dielectric constant. The benzenes enhance the number and intensity of π H-bonds. It deepens the trap level contributed by H-bonding acceptors, including carbon atoms of benzenes and sulfur atoms, thereby improving the breakdown strength. AcPTU has a high dielectric constant due to the enhanced dielectric relaxation strength of the dihydrogen-bonding array. ArPTU exhibits high breakdown strength up to 855 MV/m because the benzene structure enhances the H-bonding effect on hindering charge transport. Additionally, when the electric field of 300 MV/m is applied, the energy density and efficiency of AcPTU reach 2.62 J/cm3 and 93.31%, respectively. This study provides a theoretical basis for improving the dielectric energy storage characteristics of intrinsic polymers.

     

/

返回文章
返回