李舟平, 曾令康, 姚伟, 胡泽, 帅航, 汤涌, 文劲宇. 基于知识融合和深度强化学习的智能紧急切机决策[J]. 中国电机工程学报, 2024, 44(5): 1675-1687. DOI: 10.13334/j.0258-8013.pcsee.222633
引用本文: 李舟平, 曾令康, 姚伟, 胡泽, 帅航, 汤涌, 文劲宇. 基于知识融合和深度强化学习的智能紧急切机决策[J]. 中国电机工程学报, 2024, 44(5): 1675-1687. DOI: 10.13334/j.0258-8013.pcsee.222633
LI Zhouping, ZENG Lingkang, YAO Wei, HU Ze, SHUAI Hang, TANG Yong, WEN Jinyu. Intelligent Emergency Generator Rejection Schemes Based on Knowledge Fusion and Deep Reinforcement Learning[J]. Proceedings of the CSEE, 2024, 44(5): 1675-1687. DOI: 10.13334/j.0258-8013.pcsee.222633
Citation: LI Zhouping, ZENG Lingkang, YAO Wei, HU Ze, SHUAI Hang, TANG Yong, WEN Jinyu. Intelligent Emergency Generator Rejection Schemes Based on Knowledge Fusion and Deep Reinforcement Learning[J]. Proceedings of the CSEE, 2024, 44(5): 1675-1687. DOI: 10.13334/j.0258-8013.pcsee.222633

基于知识融合和深度强化学习的智能紧急切机决策

Intelligent Emergency Generator Rejection Schemes Based on Knowledge Fusion and Deep Reinforcement Learning

  • 摘要: 紧急控制是在严重故障后维持电力系统暂态安全稳定的重要手段。目前常用的“人在环路”离线紧急控制决策制定方式存在效率不高、严重依赖专家经验等问题,该文提出一种基于知识融合和深度强化学习(deep reinforcement learning,DRL)的智能紧急切机决策制定方法。首先,构建基于DRL的紧急切机决策制定框架。然后,在智能体处理多个发电机决策时,由于产生的高维决策空间使得智能体训练困难,提出决策空间压缩和应用分支竞争Q(branching dueling Q,BDQ)网络的两种解决方法。接着,为了进一步提高智能体的探索效率和决策质量,在智能体训练中融合紧急切机控制相关知识经验。最后,在10机39节点系统中的仿真结果表明,所提方法可以在多发电机决策时快速给出有效的紧急切机决策,应用BDQ网络比决策空间压缩的决策性能更好,知识融合策略可引导智能体减少无效决策探索从而提升决策性能。

     

    Abstract: Emergency control is an important means of maintaining power system transient security and stability following serious faults. The current popular "human-in- the-loop" offline emergency control decision-making method has some drawbacks, including low efficiency and heavy reliance on expert experience. Therefore, this paper proposes an intelligent emergency generator rejection decision-making method based on knowledge fusion and deep reinforcement learning (DRL). First, a DRL-based emergency generator rejection decision-making framework is built. Then, when the agent deals with multi-generator decisions, the resulting high-dimensional decision space makes the agent training difficult. There are two solutions proposed: decision space compression and the application of a branching dueling Q (BDQ) network. Next, to further improve the exploration efficiency and the decision-making quality of the agent, the knowledge and experience related to emergency generator rejection control are integrated to the agent training. Finally, the simulation results in the 10-machine 39-bus system show that the proposed method can quickly give effective emergency generator rejection decisions in multi-generator decision- making. Applying a BDQ network has better decision performance than decision space compression. The knowledge fusion strategy can guide the agents to reduce ineffective decision- making explorations and improve decision-making performance.

     

/

返回文章
返回