丁涛, 黄雨涵, 张洪基, 方万良, 冯凯, 冯树海, 王正风, 梁肖. 基于等微增率并计及机组功率约束的火电机组最优负荷分配精确解[J]. 中国电机工程学报, 2024, 44(4): 1446-1459. DOI: 10.13334/j.0258-8013.pcsee.222537
引用本文: 丁涛, 黄雨涵, 张洪基, 方万良, 冯凯, 冯树海, 王正风, 梁肖. 基于等微增率并计及机组功率约束的火电机组最优负荷分配精确解[J]. 中国电机工程学报, 2024, 44(4): 1446-1459. DOI: 10.13334/j.0258-8013.pcsee.222537
DING Tao, HUANG Yuhan, ZHANG Hongji, FANG Wanliang, FENG Kai, FENG Shuhai, WANG Zhengfeng, LIANG Xiao. Precision Solution of Optimal Load Dispatch of Thermal Units With Power Constraints Based on Equal Incremental Cost Principle[J]. Proceedings of the CSEE, 2024, 44(4): 1446-1459. DOI: 10.13334/j.0258-8013.pcsee.222537
Citation: DING Tao, HUANG Yuhan, ZHANG Hongji, FANG Wanliang, FENG Kai, FENG Shuhai, WANG Zhengfeng, LIANG Xiao. Precision Solution of Optimal Load Dispatch of Thermal Units With Power Constraints Based on Equal Incremental Cost Principle[J]. Proceedings of the CSEE, 2024, 44(4): 1446-1459. DOI: 10.13334/j.0258-8013.pcsee.222537

基于等微增率并计及机组功率约束的火电机组最优负荷分配精确解

Precision Solution of Optimal Load Dispatch of Thermal Units With Power Constraints Based on Equal Incremental Cost Principle

  • 摘要: 火电机组最优负荷分配是电力系统经济运行的重要模型,也是电力系统本科生专业基础课《电力系统分析》的重要教学内容之一。经典教科书采用等微增率方法求解该问题,并给出了相应的物理含义。由于等微增率法是基于不考虑火电机组上下界物理约束而推导出来的,部分教科书补充了计及火电机组上下界物理约束时的情况,即如果某台机组的无约束最优解违背了上(下)界约束,则将该机组对应的最优解限制到相应的出力上(下)界,然后对其余火电机组再进行重新的等微增率分配。然而,简单算例表明,补充求解方法的适用范围是有限的。为此,该文对火电机组最优负荷分配问题进行重新探索,推导教材方法适用的一个充分条件与一个必要条件。面向本科生与研究生,分别提出考虑机组上下界约束后的最优负荷分配方法,并进行严格的理论推导。理论推导与大量的仿真算例表明,在机组数量较少时,教材中的求解方法有可能适用,而机组数较多时,可能出现不适用的情况。该文所提方法可以将适用范围扩展到机组数量较多的场景,并且进行严格理论推导。希望该文可以为《电力系统分析》教学过程与教材修订提供帮助。

     

    Abstract: The optimal load dispatch of thermal units is an important model for the economic operation of the power system, and an essential teaching component in the foundational curriculum "Power System Analysis" for undergraduate students studying power systems. Typically, textbooks adopt the classical method based on the equal incremental cost principle to solve this problem, and explain the corresponding physical meaning in detail. Since the classical method is derived without considering the physical constraints of the upper and lower bounds of thermal power units, some textbooks augment this method by considering these constraints, that is, if the unconstrained optimal solution of a unit violates the upper (lower) bound constraints, the optimal solution corresponding to this unit will be constrained to the corresponding upper (lower) output bound, and then the other thermal power units will be re-dispatched according to the equal incremental cost principle. However, simple scenarios reflect that the supplementary content has a limited area of application. For this reason, this paper re-explores the optimal load dispatch of thermal power units, and presents sufficient and necessary conditions for the supplementary content to be applied. For undergraduate and postgraduate students, methods that consider the upper and lower bounds of the thermal units are proposed respectively, and strict theoretical derivations are performed. Theoretical derivations and quantitative simulation results illustrate that the supplementary method can be applied to most scenarios with few units, while it cannot be applied to cases with many units. Thus, the proposed method can be extended to scenarios with a greater number of units. This paper is expected to support the teaching process and the textbook re-editing of "Power System Analysis".

     

/

返回文章
返回