邢晓萱, 巩敦卫, 孙晓燕, 张勇, 梁睿. 基于重构误差和极端模式识别的综合能源系统短期负荷预测[J]. 中国电机工程学报, 2024, 44(9): 3476-3488. DOI: 10.13334/j.0258-8013.pcsee.222510
引用本文: 邢晓萱, 巩敦卫, 孙晓燕, 张勇, 梁睿. 基于重构误差和极端模式识别的综合能源系统短期负荷预测[J]. 中国电机工程学报, 2024, 44(9): 3476-3488. DOI: 10.13334/j.0258-8013.pcsee.222510
XING Xiaoxuan, GONG Dunwei, SUN Xiaoyan, ZHANG Yong, LIANG Rui. Short-term Load Forecasting of Integrated Energy System Based on Reconstruction Error and Extreme Patterns Recognition[J]. Proceedings of the CSEE, 2024, 44(9): 3476-3488. DOI: 10.13334/j.0258-8013.pcsee.222510
Citation: XING Xiaoxuan, GONG Dunwei, SUN Xiaoyan, ZHANG Yong, LIANG Rui. Short-term Load Forecasting of Integrated Energy System Based on Reconstruction Error and Extreme Patterns Recognition[J]. Proceedings of the CSEE, 2024, 44(9): 3476-3488. DOI: 10.13334/j.0258-8013.pcsee.222510

基于重构误差和极端模式识别的综合能源系统短期负荷预测

Short-term Load Forecasting of Integrated Energy System Based on Reconstruction Error and Extreme Patterns Recognition

  • 摘要: 综合能源系统的运行场景存在极端模式,且含有异常数据,亟剧增加了综合能源负荷预测的难度。该文提出基于极端模式识别和误差重构的综合能源系统极端模式短期负荷预测方法,通过极端模式的识别,异常数据的检测,提高综合能源负荷预测的精度。首先,基于最小累积距离的综合能源负荷数据聚类,识别系统的极端模式;然后,利用深度学习模型的残差和聚类误差进行误差重构,检测异常数据;最后,采用改进的Stacking集成学习方法,进行极端模式的综合能源负荷预测。将所提方法应用于典型的综合能源系统,并与已有方法比较,实验结果表明,所提方法能够很好地解决极端模式的综合能源系统短期负荷预测问题。

     

    Abstract: The operation scenarios of integrated energy systems have extreme patterns and contain abnormal data, which sharply increases the difficulty of integrated energy load forecasting. This paper aims to improve the accuracy of forecasting integrated energy loads by recognizing extreme patterns, detecting abnormal data, and proposing a method of short-term load forecasting of integrated energy systems based on reconstruction error and extreme pattern recognition. First, by clustering integrated energy load data based on the smallest cumulative distance, extreme patterns of the system are found. Then, error reconstruction is performed using clustering error and the residual of the deep learning model to detect anomalous data. Finally, the improved Stacking integrated learning method is used to forecast integrated energy loads in extreme patterns. The proposed method is tested against previous methods on a typical integrated energy system. The experimental results show that the proposed method is effective in addressing the issue of forecasting integrated energy loads with extreme patterns.

     

/

返回文章
返回