王谱宇, 耿路路, 刘兴江, 程含渺, 方凯杰, 张小平. 基于在线特征库的非侵入式负荷特征提取方法[J]. 中国电机工程学报, 2024, 44(9): 3489-3499. DOI: 10.13334/j.0258-8013.pcsee.222436
引用本文: 王谱宇, 耿路路, 刘兴江, 程含渺, 方凯杰, 张小平. 基于在线特征库的非侵入式负荷特征提取方法[J]. 中国电机工程学报, 2024, 44(9): 3489-3499. DOI: 10.13334/j.0258-8013.pcsee.222436
WANG Puyu, GENG Lulu, LIU Xingjiang, CHENG Hanmiao, FANG Kaijie, ZHANG Xiaoping. Non-intrusive Load Feature Extraction Method Based on Online Feature Library[J]. Proceedings of the CSEE, 2024, 44(9): 3489-3499. DOI: 10.13334/j.0258-8013.pcsee.222436
Citation: WANG Puyu, GENG Lulu, LIU Xingjiang, CHENG Hanmiao, FANG Kaijie, ZHANG Xiaoping. Non-intrusive Load Feature Extraction Method Based on Online Feature Library[J]. Proceedings of the CSEE, 2024, 44(9): 3489-3499. DOI: 10.13334/j.0258-8013.pcsee.222436

基于在线特征库的非侵入式负荷特征提取方法

Non-intrusive Load Feature Extraction Method Based on Online Feature Library

  • 摘要: 负荷特征是指负荷设备运行过程中具备某种统计规律的特殊标识,而包含负荷特征的数据库则是实现非侵入式负荷监测与分解的基本依据。对于纯阻性负荷设备,研究人员利用其运行状态切换过程中功率产生跃变的特点,可以准确提取相应状态下的负荷特征。然而,对非纯阻性设备,其负荷特征提取存在以下2个问题。问题1)运行状态切换过程中功率变化不显著,无法精准定位状态投切时刻点;问题2)负荷设备存在功率缓变化的运行状态,导致对应状态下的负荷特征不唯一,无法手动提取。为了解决非纯阻性设备负荷特征提取中存在的上述问题,提出一种基于在线特征库的非侵入式负荷特征提取方法,该方法分为2个阶段。第一阶段:基于负荷设备运行过程中的稳态周期电流数组建立在线特征库,通过改进Pearson相似系数构建滑窗函数,得到负荷设备运行时的周期电流数组与在线特征库的相似性,并同步判断在线特征库冗余性,实现负荷设备状态数据分割;第二阶段:计算在线特征库的特征矩阵,对特征矩阵进行K-means聚类分析,融合相似在线特征库,形成负荷设备的状态特征库,从而实现负荷设备特征电流数组的提取。在私人数据集和PLAID数据集上的测试结果证明,所提负荷特征提取方法在不同的用电场景下均有较好的鲁棒性。所提方法可大幅减少负荷特征提取阶段的人工参与,有利于缓解因负荷设备种类过多导致的负荷特征提取烦琐的问题,为后续建立负荷特征数据库提供了便利。

     

    Abstract: Load characteristics refer to the special identification of certain statistical laws during the operation of load equipment. The database containing load characteristics is the basic basis for non-intrusive load monitoring and decomposition. For pure resistive load equipment, researchers can accurately extract the load characteristics in the corresponding state by using the characteristics of the power variation during the switching process of its operating states. However, for non-pure resistive devices, the load feature extraction has the following two problems. Problem 1: The power variation is not significant during the switching of the operating states, which results in difficulty in accurately locating the switching point of the state. Problem 2: The load equipment has an operating state in which the power varies slowly, resulting in the consequence that the load characteristics in the corresponding state is not unique, which cannot be manually extracted. Regarding the above problems, this paper proposed a non-intrusive load feature extraction method based on an online feature library. The operation process of the method was divided into two stages. Stage 1: Establish an online feature library based on the steady-state periodic current array during the operation of the load equipment. The sliding window function was constructed by improving Pearson similarity coefficient to calculate the similarity between the periodic current array and the online feature library when the load equipment is running, and synchronously judge the redundancy of the online feature library to achieve the load equipment status data segmentation. Stage 2: Calculate the feature matrix of the online feature library, perform K-means cluster analysis on the feature matrix, and fuse the similar online feature library to form the state feature library of the load equipment, so as to realize the extraction of the characteristics of the current array of the load equipment. The test results on private data sets and PLAID data sets show that the load feature extraction method proposed in this paper has good robustness in different power consumption scenarios.

     

/

返回文章
返回