杨莉, 黄文焘, 余墨多, 邰能灵, 李然, 谭恩荣, 邵思语. 港口大规模冷箱负荷群用电的一致性分层优化调度方法[J]. 中国电机工程学报, 2024, 44(2): 586-596. DOI: 10.13334/j.0258-8013.pcsee.222370
引用本文: 杨莉, 黄文焘, 余墨多, 邰能灵, 李然, 谭恩荣, 邵思语. 港口大规模冷箱负荷群用电的一致性分层优化调度方法[J]. 中国电机工程学报, 2024, 44(2): 586-596. DOI: 10.13334/j.0258-8013.pcsee.222370
YANG Li, HUANG Wentao, YU Moduo, TAI Nengling, LI Ran, TAN Enrong, SHAO Siyu. Consensus Based Hierarchical Optimization Scheduling Method for Large-scale Reefer Loads in Ports[J]. Proceedings of the CSEE, 2024, 44(2): 586-596. DOI: 10.13334/j.0258-8013.pcsee.222370
Citation: YANG Li, HUANG Wentao, YU Moduo, TAI Nengling, LI Ran, TAN Enrong, SHAO Siyu. Consensus Based Hierarchical Optimization Scheduling Method for Large-scale Reefer Loads in Ports[J]. Proceedings of the CSEE, 2024, 44(2): 586-596. DOI: 10.13334/j.0258-8013.pcsee.222370

港口大规模冷箱负荷群用电的一致性分层优化调度方法

Consensus Based Hierarchical Optimization Scheduling Method for Large-scale Reefer Loads in Ports

  • 摘要: 为解决港口大量冷藏集装箱负荷群优化调度面临的优化效果与计算效率难题,该文提出冷箱集群分层迭代调度架构及多智体制冷效率一致性优化策略。建立考虑热动态过程的冷箱负荷用电模型,并根据用电特性将冷箱聚类为集群,降低冷箱控制维度与信息交互量级。建立冷箱动态电价与集群用电功率迭代优化的预调度模型,提出冷箱制冷效率主从一致性的功率动态分配算法,冷箱个体根据电价、温度、制冷限值主动响应预调度策略,实现大规模冷箱自趋优运行和负荷功率有序转移。以日照港为算例,所提方法可将用电成本降低12.5%,计算效率提升4倍,优化结果与全局优化的偏差仅为0.5%,实现了大规模冷箱群高效优化。

     

    Abstract: To improve the optimization effect and efficiency of large-scale reefer-loads scheduling in ports, this paper proposes a hierarchical iterative scheduling architecture and the multi-agent refrigerating efficiency consensus optimization strategy for reefer clusters. The reefer power model considering the thermodynamic process is established, and the reefers are clustered according to power characteristics, which reduces the control dimensions and the information interactions. Then the pre-scheduling model for the iterative optimization of dynamic price and reefer cluster consumption is established. A leader-follower refrigerating efficiency consensus algorithm for power dynamic allocation is proposed to make each reefer actively respond to the pre-scheduling strategy according to the electricity price, temperature, and cooling limits. It realizes self-optimizing operation of massive reefers and orderly load transfer. Finally, taking Rizhao Port as an example, the proposed method can reduce the electricity cost by 12.5% and increase the computational efficiency by 4 times. The deviation of the optimization results from the global optimization is reduced to 0.5%. It realizes efficient optimization of large-scale reefer loads.

     

/

返回文章
返回