毛明轩, 冯心营, 陈思宇, 王立宁. 基于贝叶斯优化卷积神经网络的路面光伏阵列最大功率点电压预测方法[J]. 中国电机工程学报, 2024, 44(2): 620-630. DOI: 10.13334/j.0258-8013.pcsee.222333
引用本文: 毛明轩, 冯心营, 陈思宇, 王立宁. 基于贝叶斯优化卷积神经网络的路面光伏阵列最大功率点电压预测方法[J]. 中国电机工程学报, 2024, 44(2): 620-630. DOI: 10.13334/j.0258-8013.pcsee.222333
MAO Mingxuan, FENG Xinying, CHEN Siyu, WANG Lining. A Novel Maximum Power Point Voltage Forecasting Method for Pavement Photovoltaic Array Based on Bayesian Optimization Convolutional Neural Network[J]. Proceedings of the CSEE, 2024, 44(2): 620-630. DOI: 10.13334/j.0258-8013.pcsee.222333
Citation: MAO Mingxuan, FENG Xinying, CHEN Siyu, WANG Lining. A Novel Maximum Power Point Voltage Forecasting Method for Pavement Photovoltaic Array Based on Bayesian Optimization Convolutional Neural Network[J]. Proceedings of the CSEE, 2024, 44(2): 620-630. DOI: 10.13334/j.0258-8013.pcsee.222333

基于贝叶斯优化卷积神经网络的路面光伏阵列最大功率点电压预测方法

A Novel Maximum Power Point Voltage Forecasting Method for Pavement Photovoltaic Array Based on Bayesian Optimization Convolutional Neural Network

  • 摘要: 路面光伏阵列上快速行驶的车辆,所形成的车辆阴影具有复杂的动态随机分布特性,将导致路面光伏阵列的输出功率-电压(P-V)特性曲线呈现动态多峰特性,给路面光伏阵列最大功率点跟踪(maximum power point tracking,MPPT)控制带来挑战。基于此,文中提出一种基于贝叶斯优化(Bayesian optimization,BO)卷积神经网络(convolutional neural network,CNN)的路面光伏阵列最大功率点电压预测方法。首先,将路面光伏阵列的光照和温度的环境信息以图像形式输入基于贝叶斯优化CNN的最大功率点电压预测模型进行学习;然后,利用训练出的预测模型,对当前时刻下路面光伏阵列最大功率点工作电压进行预测;最后,仿真和试验结果表明,提出的预测模型具有良好的适应性,能够精准预测不同车辆阴影工况下的路面光伏阵列最大功率点工作电压,尤其是大幅度提高最大功率点工作电压的预测速度,为动态随机车辆阴影下路面光伏阵列的最大功率点跟踪控制奠定基础。

     

    Abstract: The vehicle shadows formed by fast-moving vehicles on the pavement PV array have complex dynamic random distribution characteristics, which will cause the P-V curve of the pavement PV array to exhibit dynamic multi-peak characteristics and bring challenges to the maximum power point tracking (MPPT) control of the pavement PV array. Therefore, a maximum power point voltage forecasting method based on Bayesian optimization (BO) convolutional neural network (CNN) is proposed. The images of environmental information of the pavement PV array are input into the maximum power point voltage forecasting model based on CNN for learning, and then this model is used for predicting the maximum power point operating voltage of the pavement PV array. Finally, simulation and experimental results show that this predicting model has good adaptability and can accurately predict the maximum power point operating voltage of the pavement PV array under different vehicle shadow conditions, especially in greatly improving the forecasting speed of the maximum power point voltage, which lays a foundation for MPPT control of pavement PV array under the shadows of dynamic random vehicles.

     

/

返回文章
返回