王炜, 冯斌, 黄刚, 刘祝平, 籍雯媗, 郭创新. 基于自注意力编码器和深度神经网络的短期净负荷预测[J]. 中国电机工程学报, 2023, 43(23): 9072-9083. DOI: 10.13334/j.0258-8013.pcsee.221835
引用本文: 王炜, 冯斌, 黄刚, 刘祝平, 籍雯媗, 郭创新. 基于自注意力编码器和深度神经网络的短期净负荷预测[J]. 中国电机工程学报, 2023, 43(23): 9072-9083. DOI: 10.13334/j.0258-8013.pcsee.221835
WANG Wei, FENG Bin, HUANG Gang, LIU Zhuping, JI Wenxuan, GUO Chuangxin. Short-term Net Load Forecasting Based on Self-attention Encoder and Deep Neural Network[J]. Proceedings of the CSEE, 2023, 43(23): 9072-9083. DOI: 10.13334/j.0258-8013.pcsee.221835
Citation: WANG Wei, FENG Bin, HUANG Gang, LIU Zhuping, JI Wenxuan, GUO Chuangxin. Short-term Net Load Forecasting Based on Self-attention Encoder and Deep Neural Network[J]. Proceedings of the CSEE, 2023, 43(23): 9072-9083. DOI: 10.13334/j.0258-8013.pcsee.221835

基于自注意力编码器和深度神经网络的短期净负荷预测

Short-term Net Load Forecasting Based on Self-attention Encoder and Deep Neural Network

  • 摘要: 随着新能源渗透比例的提高,新型电力系统的源荷平衡与稳定运行依赖于更精确可信的预测。净负荷是实际负荷减去新能源出力的负荷需求,其准确的预测结果能够有效提高电力系统运行经济性与安全性。该文采用直接预测策略,提出基于自注意力编码器和深度神经网络的净负荷预测模型,该模型包括提取原始不确定量特征信息的自注意力编码器模块和提取净负荷时序特征的长短期记忆神经网络模块,两个模块提取的特征信息输入残差神经网络后输出最终的预测结果。同时,由于净负荷集成了负荷、风光等多个不确定量,波动性较强,该文结合条件分位数回归有效实现非参数区间预测,来量化预测不确定性,评估净负荷波动范围。算例分析表明,所提模型相比常见的预测模型取得了更高的净负荷预测精度,给出的预测区间质量也优于基线模型,能够有效支持电网实时运行。

     

    Abstract: With the increase of renewable energy penetration, the source-load balance and stable operation of power systems depend on more accurate and reliable forecasts. The net load is the actual load minus the renewable energy generation, and its accurate prediction can effectively improve the economy and safety of the power system. Therefore, this paper adopts a direct prediction strategy and proposes a net load prediction model based on a self-attention encoder and deep neural network, including a self-attention encoder module that extracts the original uncertainty feature information and a long and short-term memory neural network module that extracts the net load temporal features, and these two parts of feature information are input into a residual neural network to output the final prediction results. At the same time, since the net load integrates several uncertainties such as load, PV, wind power, and it is highly volatile, this paper combines conditional quantile regression to effectively implement non-parametric interval prediction to quantify forecast uncertainty and evaluate the range of net load fluctuations. Case studies show that the proposed AE-DNN forecasting model achieves higher net load forecasting accuracy than common forecasting models, and the quality of the prediction intervals is better than that of the baseline model, which can effectively support the real-time grid operation.

     

/

返回文章
返回