闫志远, 孙桓五, 刘世闯, 赵立禹. 一种基于GRU的氢燃料重卡汽车工况下锂离子电池温度预测模型[J]. 中国电机工程学报, 2024, 44(6): 2330-2339. DOI: 10.13334/j.0258-8013.pcsee.221789
引用本文: 闫志远, 孙桓五, 刘世闯, 赵立禹. 一种基于GRU的氢燃料重卡汽车工况下锂离子电池温度预测模型[J]. 中国电机工程学报, 2024, 44(6): 2330-2339. DOI: 10.13334/j.0258-8013.pcsee.221789
YAN Zhiyuan, SUN Huanwu, LIU Shichuang, ZHAO Liyu. A GRU Based Temperature Prediction Model of Lithium-ion Battery for Hydrogen Fuel Heavy Truck Under Operating Conditions[J]. Proceedings of the CSEE, 2024, 44(6): 2330-2339. DOI: 10.13334/j.0258-8013.pcsee.221789
Citation: YAN Zhiyuan, SUN Huanwu, LIU Shichuang, ZHAO Liyu. A GRU Based Temperature Prediction Model of Lithium-ion Battery for Hydrogen Fuel Heavy Truck Under Operating Conditions[J]. Proceedings of the CSEE, 2024, 44(6): 2330-2339. DOI: 10.13334/j.0258-8013.pcsee.221789

一种基于GRU的氢燃料重卡汽车工况下锂离子电池温度预测模型

A GRU Based Temperature Prediction Model of Lithium-ion Battery for Hydrogen Fuel Heavy Truck Under Operating Conditions

  • 摘要: 针对目前氢燃料重卡在行驶过程中,动力电池工况复杂、外表面温度变化难以预测、滞后时间长等问题,以氢燃料重卡锂离子动力电池外表面温度为研究对象,提出一种类交叉熵损失函数和自适应矩估计(adaptive moment estimation,Adam)优化的改进型门控循环单元神经网络(gate recurrent unit,GRU),建立锂离子动力电池表面温度预测模型。该模型利用GRU神经网络的特殊门机制和全局处理能力,得到锂离子电池表面温度和电池充放电电流、电压、充放电时间、历史温度、当前温度以及环境温度之间的非线性关系。采用4个精度评价函数对预测模型进行评价:经过5种环境温度下的模拟工况实验,验证该模型的准确性。结果表明,基于GRU的电池温度预测模型的误差相对于反向传播(back propagation,BP)神经网络模型和循环神经网络模型(recurrent neural network,RNN)来说较小,说明GRU的锂离子电池温度预测模型具有更高的精度。该文为磷酸铁锂电池表面温度的精准预测提出了一种新的方法。

     

    Abstract: Addressing the complexities of power battery conditions, unpredictable surface temperature changes, and significant time lags encountered during the operation of heavy hydrogen fuel cards, this study focuses on the outside surface temperature of lithium-ion power batteries as the primary research target. To this end, an enhanced gate recurrent unit (GRU) neural network is proposed, optimized through the integration of a cross-entropy loss function and adaptive moment estimation (Adam). This approach establishes a surface temperature prediction model for lithium-ion power batteries, aiming to improve the accuracy and reliability of temperature predictions. The model uses the special gate mechanism and global processing ability of GRU neural network to obtain the nonlinear relationship between the surface temperature of lithium-ion battery and battery charging and discharging current, voltage, charging and discharging time, historical temperature, current temperature and ambient temperature. In this paper, four accuracy evaluation functions are used to evaluate the prediction model. The accuracy of the model is verified by simulation experiments under five ambient temperatures. The results show that the error of battery temperature prediction model based on GRU is relatively small compared with back propagation (BP) neural network model and recurrent neural network (RNN) neural network model, which indicates that the temperature prediction model of lithium-ion battery based on GRU has higher accuracy. This paper presents a new method for accurately predicting the surface temperature of lithium-ion phosphate battery.

     

/

返回文章
返回