陈翊翔, 董美蓉, 蔡俊斌, 陈泓杰, 尚子瀚, 陆继东. 激光诱导击穿光谱技术结合TrAdaBoost算法的煤粉颗粒流定量分析[J]. 中国电机工程学报, 2023, 43(24): 9638-9645. DOI: 10.13334/j.0258-8013.pcsee.221733
引用本文: 陈翊翔, 董美蓉, 蔡俊斌, 陈泓杰, 尚子瀚, 陆继东. 激光诱导击穿光谱技术结合TrAdaBoost算法的煤粉颗粒流定量分析[J]. 中国电机工程学报, 2023, 43(24): 9638-9645. DOI: 10.13334/j.0258-8013.pcsee.221733
CHEN Yixiang, DONG Meirong, CAI Junbin, CHEN Hongjie, SHANG Zihan, LU Jidong. Quantitative Analysis of Coal Particle Flow by Laser Induced Breakdown Spectroscopy Based on TrAdaBoost Algorithm[J]. Proceedings of the CSEE, 2023, 43(24): 9638-9645. DOI: 10.13334/j.0258-8013.pcsee.221733
Citation: CHEN Yixiang, DONG Meirong, CAI Junbin, CHEN Hongjie, SHANG Zihan, LU Jidong. Quantitative Analysis of Coal Particle Flow by Laser Induced Breakdown Spectroscopy Based on TrAdaBoost Algorithm[J]. Proceedings of the CSEE, 2023, 43(24): 9638-9645. DOI: 10.13334/j.0258-8013.pcsee.221733

激光诱导击穿光谱技术结合TrAdaBoost算法的煤粉颗粒流定量分析

Quantitative Analysis of Coal Particle Flow by Laser Induced Breakdown Spectroscopy Based on TrAdaBoost Algorithm

  • 摘要: 将激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)技术应用于煤粉颗粒流煤质定量分析过程中,颗粒流的不稳定波动会影响激光−物质相互作用的稳定性,对定量分析結果产生负面影响。该文提出一种基于TrAdaBoost迁移学习算法的煤粉颗粒流LIBS定量分析方法,在定标建模时将煤粉压片样品的稳定光谱数据迁移至煤粉颗粒流光谱数据来修正减小颗粒流数据的波动偏差,以辅助提高颗粒流工业指标分析测量的准确性。通过研究煤粉在压片和颗粒流状态下的光谱特性,建立同时包含两者数据的回归预测模型。结果表明,采用迁移算法建立的燃煤挥发分、热值、灰分定量分析模型的决定系数分别达到0.996、0.934、0.937,与传统的使用PLSR算法的颗粒流预测模型相比,有明显的提升。可知,提出的迁移学习方法在LIBS应用于颗粒流定量分析中具有应用前景。

     

    Abstract: In the laser induced breakdown spectroscopy (LIBS) detection process of coal particle flow, the unstable fluctuation of particle flow affects the stability of laser-material interaction, which has a negative effect on the quantitative analysis results. In this work, a quantitative analysis method for coal particle flow by LIBS based on the TrAdaBoost algorithm is proposed. The stable spectral data from the pressed pellet coal samples are migrated during calibration modeling to correct the fluctuation bias of the particle flow data. It can improve the accuracy of the measurement of the coal particle flow. By investigating the similarity of the spectral properties in the coal pellet and particle flow, a regression prediction model incorporating both data is developed. The results show that the coefficients of determination of the volatile matter content, calorific value, and ash content of coal quantification analysis models using TrAdaBoost reach 0.996, 0.934, and 0.937, respectively, which are significantly improved compared with the conventional prediction models for particle flow using the PLSR algorithm. The measurements demonstrate that the proposed transfer learning method has a promising prospect in improving particle flow quantitative analysis of LIBS.

     

/

返回文章
返回