乔骥, 赵紫璇, 王晓辉, 史梦洁, 蒲天骄. 面向电力系统智能分析的机器学习可解释性方法研究(二):电网稳定分析的物理内嵌式机器学习[J]. 中国电机工程学报, 2023, 43(23): 9046-9058. DOI: 10.13334/j.0258-8013.pcsee.221721
引用本文: 乔骥, 赵紫璇, 王晓辉, 史梦洁, 蒲天骄. 面向电力系统智能分析的机器学习可解释性方法研究(二):电网稳定分析的物理内嵌式机器学习[J]. 中国电机工程学报, 2023, 43(23): 9046-9058. DOI: 10.13334/j.0258-8013.pcsee.221721
QIAO Ji, ZHAO Zixuan, WANG Xiaohui, SHI Mengjie, PU Tianjiao. Research on Interpretable Methods of Machine Learning Applied in Intelligent Analysis of Power System (Part Ⅱ): Physics-embedded Machine Learning for Power System Stability Analysis[J]. Proceedings of the CSEE, 2023, 43(23): 9046-9058. DOI: 10.13334/j.0258-8013.pcsee.221721
Citation: QIAO Ji, ZHAO Zixuan, WANG Xiaohui, SHI Mengjie, PU Tianjiao. Research on Interpretable Methods of Machine Learning Applied in Intelligent Analysis of Power System (Part Ⅱ): Physics-embedded Machine Learning for Power System Stability Analysis[J]. Proceedings of the CSEE, 2023, 43(23): 9046-9058. DOI: 10.13334/j.0258-8013.pcsee.221721

面向电力系统智能分析的机器学习可解释性方法研究(二):电网稳定分析的物理内嵌式机器学习

Research on Interpretable Methods of Machine Learning Applied in Intelligent Analysis of Power System (Part Ⅱ): Physics-embedded Machine Learning for Power System Stability Analysis

  • 摘要: 将知识融入机器学习模型是提升算法可解释性与计算性能的重要途径之一。针对电力系统运行的稳定分析问题,提出一种新的物理内嵌式机器学习框架与方法,将描述故障动态过程的微分-代数方程作为先验知识,引导神经网络模型训练。相比于完全依赖数据的通用机器学习方法,物理内嵌式机器学习直接模拟物理过程,通过数据背后所蕴含的物理方程来约束机器学习决策空间,并输出故障后的动态曲线,结果物理含义与可解释性更强。同时,物理内嵌模式也大幅降低了模型训练对海量数据的依赖,为小样本学习及以及模型向真实系统迁移应用过程中的参数辨识提供一种新的思路。

     

    Abstract: It is one of the important approaches to improve the interpretability and performance by integrating knowledge into machine learning models. In this paper, a new physics-embedded machine learning framework for power system stability analysis is proposed, in which the model is trained with the prior knowledge described by the differential-algebraic equations of the dynamic process of the power system fault. Compared to the traditional methods purely relying on the massive data, the physics-embedded machine learning model directly simulates the physical process. The physical equations contained in the data are used to guide the training procedure of the neural network and constrain the decision space of the machine learning. The dynamic curves of the fault produced by the model show explicit physical meaning, which makes the results more explainable. Meanwhile, the physics-embedded framework significantly reduces the demand of the samples, which provides new ways for the few shot learning and parameter identification when the machine learning model is applied to a real system.

     

/

返回文章
返回