周博奇, 柳丹, 席磊, 李彦营. 基于超松弛双Q学习的源荷储协同频率稳定算法研究[J]. 中国电机工程学报, 2024, 44(4): 1419-1429. DOI: 10.13334/j.0258-8013.pcsee.221686
引用本文: 周博奇, 柳丹, 席磊, 李彦营. 基于超松弛双Q学习的源荷储协同频率稳定算法研究[J]. 中国电机工程学报, 2024, 44(4): 1419-1429. DOI: 10.13334/j.0258-8013.pcsee.221686
ZHOU Boqi, LIU Dan, XI Lei, LI Yanying. Research on Source Load Storage Cooperative Frequency Stabilization Algorithm Based on Super Relaxed Double Q Learning[J]. Proceedings of the CSEE, 2024, 44(4): 1419-1429. DOI: 10.13334/j.0258-8013.pcsee.221686
Citation: ZHOU Boqi, LIU Dan, XI Lei, LI Yanying. Research on Source Load Storage Cooperative Frequency Stabilization Algorithm Based on Super Relaxed Double Q Learning[J]. Proceedings of the CSEE, 2024, 44(4): 1419-1429. DOI: 10.13334/j.0258-8013.pcsee.221686

基于超松弛双Q学习的源荷储协同频率稳定算法研究

Research on Source Load Storage Cooperative Frequency Stabilization Algorithm Based on Super Relaxed Double Q Learning

  • 摘要: 具有强随机特性的新能源规模化接入将给电网带来强随机扰动,传统控制方法无法有效解决分布式电网模式下由强随机扰动引起的频率失衡、控制性能标准变差的问题。该文从二次调频角度提出一种多区域互联电网的智能发电控制算法,即超松弛双Q学习算法,来获取多区域协同控制。所提算法在快速Q学习基础上引入超松弛因子ω来加速最优值函数的计算,同时引入双Q学习策略来解决强化学习Q算法体系中的动作探索值过高估计问题,以提升算法的收敛性与更新效率。在改进的IEEE标准两区负荷频率控制模型以及云南互联电网模型中进行仿真分析,结果可知,所提算法表现出更佳的控制性能与收敛速度。

     

    Abstract: The large-scale access to new energy with strong random characteristics will bring strong random disturbance to the power grid. The traditional control methods can not effectively solve the problems of frequency instability and worse control performance standards caused by a strong random disturbance in the distributed power grid mode. From the point of secondary frequency modulation, this paper proposes a multi-agent cooperative control algorithm for distributed multi-area interconnected power grid, i.e. over-relaxation double Q learning algorithm to obtain multi-area cooperation control. The proposed algorithm introduces an over-relaxation factor based on fast Q-learning ω. To accelerate the calculation of the optimal value function, at the same time, the double Q learning strategy is introduced to solve the problem of overestimation of the active exploration value in the reinforcement learning of the Q algorithm system, so as to improve the update efficiency and convergence performance of the algorithm. Through the simulation of the improved IEEE standard two-area load frequency control model and Yunnan interconnected power grid model, the proposed algorithm shows better control performance and convergence speed.

     

/

返回文章
返回