王道累, 姚勇, 张世恒, 朱瑞, 赵文彬. 基于红外热图像的光伏组件热斑深度学习检测方法[J]. 中国电机工程学报, 2023, 43(24): 9608-9615. DOI: 10.13334/j.0258-8013.pcsee.221519
引用本文: 王道累, 姚勇, 张世恒, 朱瑞, 赵文彬. 基于红外热图像的光伏组件热斑深度学习检测方法[J]. 中国电机工程学报, 2023, 43(24): 9608-9615. DOI: 10.13334/j.0258-8013.pcsee.221519
WANG Daolei, YAO Yong, ZHANG Shiheng, ZHU Rui, ZHAO Wenbin. Deep Learning Detection Method of Photovoltaic Module Hot Spot Based on Infrared Thermal Image[J]. Proceedings of the CSEE, 2023, 43(24): 9608-9615. DOI: 10.13334/j.0258-8013.pcsee.221519
Citation: WANG Daolei, YAO Yong, ZHANG Shiheng, ZHU Rui, ZHAO Wenbin. Deep Learning Detection Method of Photovoltaic Module Hot Spot Based on Infrared Thermal Image[J]. Proceedings of the CSEE, 2023, 43(24): 9608-9615. DOI: 10.13334/j.0258-8013.pcsee.221519

基于红外热图像的光伏组件热斑深度学习检测方法

Deep Learning Detection Method of Photovoltaic Module Hot Spot Based on Infrared Thermal Image

  • 摘要: 热斑效应是造成光伏板严重破坏的主要原因之一,为了快速、及时的检测出热斑并及时维护解决。该文提出一种基于改进YOLOv4-tiny的热斑检测方法。首先,针对热斑红外图像稀少且原始模型中mosaic数据增强不稳定的问题,提出采用伽马变换的方式对热斑数据集进行有效扩充;其次,为了使得模型更关注热斑红外图像中重要的特征,抑制不必要的特征,在网络结构中添加了注意力模块(convolutional block attention module,CBAM);最后,针对原始模型感受野较弱,提取信息不充分的缺点,将模型中的特征金字塔结构融合了路径聚合网络(path aggregation network,PANet)的思想,且在结构中加入少量卷积核为1×1的卷积层,减少了参数量。实验结果表明本文提出的改进YOLOv4-tiny模型AP50达到98.42%,相较于原始模型提升了3.63%,且检测速率在图形处理器(graphic processing unit,GPU)为GTX1070Ti的设备上达到50.06FPS,具有优秀的检测精确率并兼具良好实时性,基本接近实际应用需求。

     

    Abstract: Hot spot effect is one of the main causes of serious damage to photovoltaic panels. To quickly and timely detect hot spots and maintain them for resolution in this paper, a hot spot detection method based on improved YOLOv4-tiny is proposed. First, aiming at the problem that the infrared images of hot spots are scarce and the enhancement of mosaic in the original model is unstable, a method of gamma transform is proposed to effectively expand the hot plate data set. Secondly, in the model, focusing on important features in hot spot infrared images and suppressing unnecessary features, CBAM (convolutional block attention module) is added to the network structure. Finally, in response to the shortcomings of weak receptive field and insufficient information extraction in the original model, the feature pyramid structure in the model is integrated with the idea of PANet (path aggregation network), and a small number of convolutional layers with a convolutional kernel of 1×1 are added to the structure to reduce the number of parameters. The experimental results show that the AP50 of the improved YOLOv4-tiny model accounts for 98.42%, which is 3.63% higher than the original model, and the detection rate reaches 50.06fps on the equipment with the GPU of GTX (graphic processing unit) 1070Ti, with excellent detection accuracy and good real-time performance, which is basically close to practical application requirements.

     

/

返回文章
返回