杨挺, 杨风霞, 叶芷杉, 李大帅, 杨振宁. 基于动态采样压缩感知的超谐波监测方法[J]. 中国电机工程学报, 2023, 43(16): 6278-6287. DOI: 10.13334/j.0258-8013.pcsee.221108
引用本文: 杨挺, 杨风霞, 叶芷杉, 李大帅, 杨振宁. 基于动态采样压缩感知的超谐波监测方法[J]. 中国电机工程学报, 2023, 43(16): 6278-6287. DOI: 10.13334/j.0258-8013.pcsee.221108
YANG Ting, YANG Fengxia, YE Zhishan, LI Dashuai, YANG Zhenning. A New Measurement method for Supraharmonics Based on Dynamic Sampling and Compressed Sensing[J]. Proceedings of the CSEE, 2023, 43(16): 6278-6287. DOI: 10.13334/j.0258-8013.pcsee.221108
Citation: YANG Ting, YANG Fengxia, YE Zhishan, LI Dashuai, YANG Zhenning. A New Measurement method for Supraharmonics Based on Dynamic Sampling and Compressed Sensing[J]. Proceedings of the CSEE, 2023, 43(16): 6278-6287. DOI: 10.13334/j.0258-8013.pcsee.221108

基于动态采样压缩感知的超谐波监测方法

A New Measurement method for Supraharmonics Based on Dynamic Sampling and Compressed Sensing

  • 摘要: 随着电力电子器件向着智能高频化发展以及分布式新能源的大规模并网,超谐波引发的电能质量问题日益凸显,然而,由于超谐波信号非平稳、宽频域等特性导致其监测难度相对较大。因此,该文提出一种基于动态采样压缩感知的超谐波监测方法。在采样端,设计动态压缩采样法,对超谐波信号施加柔性时窗,通过引入尺度伸缩因子实现对窗口宽度的反馈型柔性调制。同时,理论证明时窗内超谐波信号的稀疏性,从而突破Nyquist高频采样局限,实现超谐波信号低速动态压缩采样。在重构端,设计变步长稀疏度自估计子空间追踪–动态基追踪(variable step sparsity estimation subspace pursuit-dynamic basis pursuit,VSSESP-DBP)动态重构算法。以变步长稀疏度自估计子空间追踪(variable step sparsity estimation subspace pursuit-dynamic basis pursuit,VSSESP)算法求得初始解,在初始解的基础上,提出动态基追踪(dynamic basis pursuit,DBP)算法,利用信号支撑集的时间相关性,将上一时刻解作为先验信息提升重构信号求解速度,克服了传统算法连续重构时计算复杂度高、实时性差的弊端。最后,采用风电并网模型对超谐波信号实验,测试结果表明,所提方法可实现超谐波的动态监测和精确重构,并且具有信号低采样数据量,重构准确度高和快速性优势。

     

    Abstract: With the development of high-frequency power electronic devices and the massive deployment of distributed new energy sources, supraharmonics have caused a series of problematic. However, it is difficult to accurately monitor supraharmonics due to its non-stationary and wide frequency domain. Therefore, a new monitoring method for supraharmonics based on dynamic sampling and compressed sensing is proposed. In sampling node, a dynamic compression sampling algorithm is designed based on a flexible time window, and the window width and sliding position can be adjusted by parameters. Moreover, the sparsity of the superharmonics signal within the time window is proved to break through the limitation of Nyquist and realize the low-speed dynamic compression sampling. In construction node, the variable step sparsity estimation subspace pursuit-dynamic basis pursuit (VSSESP-DBP) algorithm is designed for recovering signal continuously. First, the initial solution is reconstructed by the variable-step sparsity self-estimating subspace pursuit algorithm. Secondly, a dynamic basis pursuit algorithm is proposed, which takes the previous solution as priori information, and quickly solves the current value. Tests based on the wind power grid-connected model show that, compared with existing methods, the method in this paper could realize supraharmonics dynamic monitoring and accurate reconstruction with lower sampling frequency.

     

/

返回文章
返回