白杨, 赵义祯, 张林, 薛永建, 林阿强, 刘高文. 叶型接受孔耦合叶轮结构优化对涡轮预旋供气系统性能改进研究[J]. 中国电机工程学报, 2023, 43(15): 5943-5954. DOI: 10.13334/j.0258-8013.pcsee.220702
引用本文: 白杨, 赵义祯, 张林, 薛永建, 林阿强, 刘高文. 叶型接受孔耦合叶轮结构优化对涡轮预旋供气系统性能改进研究[J]. 中国电机工程学报, 2023, 43(15): 5943-5954. DOI: 10.13334/j.0258-8013.pcsee.220702
BAI Yang, ZHAO Yizhen, ZHANG Lin, XUE Yongjian, LIN Aqiang, LIU Gaowen. Structural Optimization of Blade-shaped Receiver Hole Coupled With Impeller on Turbine Pre-swirl System for Performance Improvement[J]. Proceedings of the CSEE, 2023, 43(15): 5943-5954. DOI: 10.13334/j.0258-8013.pcsee.220702
Citation: BAI Yang, ZHAO Yizhen, ZHANG Lin, XUE Yongjian, LIN Aqiang, LIU Gaowen. Structural Optimization of Blade-shaped Receiver Hole Coupled With Impeller on Turbine Pre-swirl System for Performance Improvement[J]. Proceedings of the CSEE, 2023, 43(15): 5943-5954. DOI: 10.13334/j.0258-8013.pcsee.220702

叶型接受孔耦合叶轮结构优化对涡轮预旋供气系统性能改进研究

Structural Optimization of Blade-shaped Receiver Hole Coupled With Impeller on Turbine Pre-swirl System for Performance Improvement

  • 摘要: 预旋供气系统为燃气涡轮转子叶片提供高品质冷气。为改进预旋供气系统温降性能,基于预旋供气系统数学模型的理论推导,揭示出原模型温降性能不显著的影响机制和解决方法,提出一种动叶前缘式进口的叶型接受孔的优化模型,并评估优化前后预旋供气系统的热力学和气动特性。结果表明,预旋腔内转静部件匹配问题是影响系统性能的一个重要限制因素,动叶前缘式接受孔能够解决转静难以匹配的问题。在满足供气流量和供气压力的条件下,采用动叶前缘式接受孔的优化模型预旋腔压力由原模型的640.2kPa降至533.0kPa,降低了16.7%。系统温变由温升转为温降,温降效率由−30%增加至55%,温降变化范围达13.56K。比功耗由6720 J/kg降至3979J/kg,下降了40.8%。

     

    Abstract: A pre-swirl system can provide high-quality cooling air for gas turbine blades. In order to improve the temperature drop performance of the pre-swirl system, the influence mechanism and solution scheme are proposed to reveal the insignificant temperature drop of the original model by theoretical derivations. A blade-shaped leading-edge receiver hole is designed to enhance the system performance. Furthermore, the thermodynamic and aerodynamic characteristics are compared for the systems using the blade-shaped receiver hole and the original receiver hole, respectively. The results show that the matching of rotor and stator parts in the pre-swirl cavity is an important factor influencing the system performance. The blade-shaped receiver hole can better solve the matching problem. Compared with the system using the original receiver hole, the pre-swirl cavity pressure of the system with blade-shaped receiver hole is reduced from 640.2 kPa to 533.0 kPa under the condition of the specific mass flow rate and pressure of the supplied air, which is decreased by 16.7%. The system using the blade-shaped receiver hole has the positive system temperature drop, the temperature drop efficiency increases from −30% to 55%, and the range of temperature drop is 13.56 K. The specific power consumption decreases by 40.8% from 6720 J/kg to 3979 J/kg.

     

/

返回文章
返回