房佳姝, 刘崇茹, 苏晨博, 林晗星, 郑乐. 基于自注意力Transformer编码器的多阶段电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2023, 43(15): 5745-5758. DOI: 10.13334/j.0258-8013.pcsee.213334
引用本文: 房佳姝, 刘崇茹, 苏晨博, 林晗星, 郑乐. 基于自注意力Transformer编码器的多阶段电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2023, 43(15): 5745-5758. DOI: 10.13334/j.0258-8013.pcsee.213334
FANG Jiashu, LIU Chongru, SU Chenbo, LIN Hanxing, ZHENG Le. Multi-stage Transient Stability Assessment of Power System Based on Self-attention Transformer Encoder[J]. Proceedings of the CSEE, 2023, 43(15): 5745-5758. DOI: 10.13334/j.0258-8013.pcsee.213334
Citation: FANG Jiashu, LIU Chongru, SU Chenbo, LIN Hanxing, ZHENG Le. Multi-stage Transient Stability Assessment of Power System Based on Self-attention Transformer Encoder[J]. Proceedings of the CSEE, 2023, 43(15): 5745-5758. DOI: 10.13334/j.0258-8013.pcsee.213334

基于自注意力Transformer编码器的多阶段电力系统暂态稳定评估方法

Multi-stage Transient Stability Assessment of Power System Based on Self-attention Transformer Encoder

  • 摘要: 人工智能方法在电力系统暂态稳定评估研究中已经取得了一定的成果。常规深层网络普遍被视为“黑盒”模型,这限制了智能算法在实际工程应用中的可信赖性;同时,常规算法对电力系统时序信息的提取能力不足。针对以上问题,构建基于Transformer编码器的多阶段暂态稳定评估方法,其多阶段预测能够有效降低失稳漏判率。和常规算法相比,Transformer模型具有良好的可解释性,其注意力机制引导模型自适应识别并聚焦于关键特征,在一定程度上揭示深层网络内部工作决策过程。此外,采用多时刻信息构建特征空间,Transformer通过注意力机制实现全局感受野,使模型快速捕获电力系统前后时刻间的状态依赖。IEEE-39节点系统上的仿真结果表明,所提方法相比常见数据驱动模型具有更高的暂稳评估准确性,呈现出良好的可解释性,并在数据污染时依然维持较高的性能。

     

    Abstract: The artificial intelligence method has made considerable achievements in power system transient stability assessment (TSA). A conventional deep network is generally regarded as a "black box" model, which limits the dependability of intelligent algorithms for practical engineering applications. Furthermore, conventional methods have limited ability to capture the dynamic evolution process of the power system. To solve the above problems, this paper introduces a multi-stage transient stability assessment method based on Transformer encoder, and missing alarms can be effectively reduced with multi-stage predictions. Compared with conventional methods, the Transformer model presents good interpretability, whose attention structure visualizes the internal work of the deep neural networks, so the model can adaptively identify and focus on the important features. Meanwhile, this paper utilizes multi-moment information to construct feature spaces. Compared with other networks, the Transformer gains a global receptive field via attention mechanism, and thus the state change of power system can be characterized quickly and accurately. Simulation on IEEE-39 bus system shows that the proposed method presents good interpretability compared to common data-driven models, showing higher accuracy of transient stability assessment and stronger robustness under data pollution.

     

/

返回文章
返回