陆超, 刘念, 周臣, 吴锁贞, 汪后港, 翟鹏宇, 杨圣超, 李旭, 张洪. 燃煤电厂炉渣形成机理研究[J]. 中国电机工程学报, 2023, 43(9): 3478-3487. DOI: 10.13334/j.0258-8013.pcsee.213102
引用本文: 陆超, 刘念, 周臣, 吴锁贞, 汪后港, 翟鹏宇, 杨圣超, 李旭, 张洪. 燃煤电厂炉渣形成机理研究[J]. 中国电机工程学报, 2023, 43(9): 3478-3487. DOI: 10.13334/j.0258-8013.pcsee.213102
LU Chao, LIU Nian, ZHOU Chen, WU Suozhen, WANG Hougang, ZHAI Pengyu, YANG Shengchao, LI Xu, ZHANG Hong. Mechanism Study on the Formation of Bottom Ash in a Coal-fired Power Plant[J]. Proceedings of the CSEE, 2023, 43(9): 3478-3487. DOI: 10.13334/j.0258-8013.pcsee.213102
Citation: LU Chao, LIU Nian, ZHOU Chen, WU Suozhen, WANG Hougang, ZHAI Pengyu, YANG Shengchao, LI Xu, ZHANG Hong. Mechanism Study on the Formation of Bottom Ash in a Coal-fired Power Plant[J]. Proceedings of the CSEE, 2023, 43(9): 3478-3487. DOI: 10.13334/j.0258-8013.pcsee.213102

燃煤电厂炉渣形成机理研究

Mechanism Study on the Formation of Bottom Ash in a Coal-fired Power Plant

  • 摘要: 采集国家能源江苏某电厂炉渣、飞灰和炉前煤粉样品,浮沉分离为1.3~2.5g/cm3密度组分,对各密度子样用扫描电镜−X射线能谱分析、X射线衍射、X射线荧光进行形貌和化学组成分析,用FactSage7.3计算900~1500oC范围内液相量变化,最后根据煤粉组成和粒度分布计算炉渣和飞灰产率和来源。研究结果发现,炉渣密度分布在1.3~2.0g/cm3之间,含炭量随子样密度提高而降低,和1300℃下液相量变化规律一致;飞灰密度分布在1.8~2.5g/cm3之间,其中 > 2.5g/cm3密度产率高达48.42%,飞灰含炭量和密度、液相量相关性不明显;炉前煤粉密度分布在1.3~2.0g/cm3之间,1300℃下随着煤粉密度提高煤灰液相量下降,其中 > 1.8g/cm3子样煤灰液相量最低,达到36%,而1500℃下各子样液相量都在56%以上。理论分析和定量计算结果表明,燃煤电厂炉膛中强烈的搅混作用,随着煤焦燃尽,使得其中粒度大、液相量高的煤灰颗粒互相碰撞、粘附、长大,最后沉降为炉渣,而粒度较小、液相量低的煤灰颗粒则随烟气流动,最后冷却成为飞灰。

     

    Abstract: In this paper, bottom ash (BA), fly ash (FA) and feeding pulverized coal (FPC) are sampled from an operating power plant of China National Energy Group in Jiangsu. They are separated into density fractions between 1.3~2.5g/cm3 using a float-sink method. Scanning electron microscope-energy dispersive spectrometer (SEM-EDS), X-ray diffraction(XRD) and X-ray fluorescence(XRF) are used to analyze their morphology and chemical composition. FactSage7.3 is adopted to calculate their liquid content between 900~1500℃. The chemical composition and particle size distribution of FPC are used to calculate the yield and source of BA and FA. The results indicate that BA consists of density fractions between 1.3~2.0g/cm3. The carbon content deceases with increasing density, coinciding well with the liquid trend. FA mainly consists of density fractions between 1.8~2.5g/cm3, in which the > 2.5g/cm3 fraction accounts for 48.42%. No clear relationship exists between the carbon content, density, and liquid content. FPC is distributed between 1.3~2.0g/cm3 in density. Under 1300oC, the liquid content of density fractions decreases with increasing density. > 1.8g/cm3 fraction has the lowest liquid content, attaining 36%. Under 1500℃, the lowest liquid content is 56%. Theoretical analysis and quantitative calculation both show the formation mechanism of bottom ash. With the burnout of coal chars, ash particles with a large size and high liquid content will collide, adhere and agglomerate due to the strong mixing action in the coal-fired power plant furnace, forming BA. Ash particles with a small size and low liquid content will flow with the flue gas and cool down to form FA.

     

/

返回文章
返回