马骏驰, 丁红蕾, 潘卫国, 邱凯娜, 穆啸天, 张凯, 赵悦彤, 郭士义, 丁承刚, 邓云天. 热催化还原二氧化碳制甲烷催化剂研究进展[J]. 中国电机工程学报, 2023, 43(9): 3468-3477. DOI: 10.13334/j.0258-8013.pcsee.212919
引用本文: 马骏驰, 丁红蕾, 潘卫国, 邱凯娜, 穆啸天, 张凯, 赵悦彤, 郭士义, 丁承刚, 邓云天. 热催化还原二氧化碳制甲烷催化剂研究进展[J]. 中国电机工程学报, 2023, 43(9): 3468-3477. DOI: 10.13334/j.0258-8013.pcsee.212919
MA Junchi, DING Honglei, PAN Weiguo, QIU Kaina, MU Xiaotian, ZHANG Kai, ZHAO Yuetong, GUO Shiyi, DING Chenggang, DENG Yuntian. Research Progress on Catalysts for Methane Production by Thermal Catalytic Reduction of Carbon Dioxide[J]. Proceedings of the CSEE, 2023, 43(9): 3468-3477. DOI: 10.13334/j.0258-8013.pcsee.212919
Citation: MA Junchi, DING Honglei, PAN Weiguo, QIU Kaina, MU Xiaotian, ZHANG Kai, ZHAO Yuetong, GUO Shiyi, DING Chenggang, DENG Yuntian. Research Progress on Catalysts for Methane Production by Thermal Catalytic Reduction of Carbon Dioxide[J]. Proceedings of the CSEE, 2023, 43(9): 3468-3477. DOI: 10.13334/j.0258-8013.pcsee.212919

热催化还原二氧化碳制甲烷催化剂研究进展

Research Progress on Catalysts for Methane Production by Thermal Catalytic Reduction of Carbon Dioxide

  • 摘要: 二氧化碳(CO2)作为一种生产高价值燃料和化学品的可再生碳源,将其催化转化为工业相关的化学品是减少温室气体排放的一项战略。近年来的研究表明,热催化CO2加氢制备甲烷技术因副产物少、转化率高、成本较低等优点,成为最具有吸引力的选择。催化剂的研究是这项技术的关键。结合近年来热催化技术催化CO2甲烷化常见的催化材料的发展现状,从催化剂的研究视角出发,从载体、负载金属等方面分析其对催化剂的活性和选择性的影响;系统介绍粒径、比表面积、负载量、碱性位点、氧空位、分散度等对CO2甲烷化的影响;简述甲烷化反应路径及反应过程中产生的中间体。最终提出未来CO2甲烷化的主要研究方向,以期为热催化技术的研究提供参考和借鉴。

     

    Abstract: Carbon dioxide (CO2) is a renewable carbon source for producing high-value fuels and chemicals. Catalytic conversion of CO2 into industry-related chemicals is one of the strategies for reducing greenhouse gas emissions. Recent studies have shown that the thermal catalytic hydrogenation of CO2 to produce methane has become the most attractive choice due to fewer by-products, higher conversion rates and lower costs. Catalyst research is the key to this technology. This paper refers to the evolution of common catalysts for CO2 methanation using thermal catalytic technology in recent years and analyzes the effects of supports, noble metals and non-noble metals on catalysts in terms of activity and selectivity. The effects of particle size, specific surface area, loading capacity, active sites, oxygen vacancies and dispersion on CO2 methanation are also introduced systematically. Furthermore, the reaction path of methanation and the intermediates generated in the process are summarized. Finally, the primary research directions of CO2 methanation in the future are presented to provide reference for studying thermal catalytic technology.

     

/

返回文章
返回