谭畅, 陈竹, 邵宇浩, 赵中阳, 周灿, 李钦武, 杨超, 郑成航, 高翔. 前馈修正的循环流化床机组脱硝系统多模型预测控制研究[J]. 中国电机工程学报, 2023, 43(5): 1867-1874. DOI: 10.13334/j.0258-8013.pcsee.212863
引用本文: 谭畅, 陈竹, 邵宇浩, 赵中阳, 周灿, 李钦武, 杨超, 郑成航, 高翔. 前馈修正的循环流化床机组脱硝系统多模型预测控制研究[J]. 中国电机工程学报, 2023, 43(5): 1867-1874. DOI: 10.13334/j.0258-8013.pcsee.212863
TAN Chang, CHEN Zhu, SHAO Yuhao, ZHAO Zhongyang, ZHOU Can, LI Qinwu, YANG Chao, ZHENG Chenghang, GAO Xiang. Research on Multi-model Predictive Control of Denitrification System of CFB Unit Based on Feedforward Modification[J]. Proceedings of the CSEE, 2023, 43(5): 1867-1874. DOI: 10.13334/j.0258-8013.pcsee.212863
Citation: TAN Chang, CHEN Zhu, SHAO Yuhao, ZHAO Zhongyang, ZHOU Can, LI Qinwu, YANG Chao, ZHENG Chenghang, GAO Xiang. Research on Multi-model Predictive Control of Denitrification System of CFB Unit Based on Feedforward Modification[J]. Proceedings of the CSEE, 2023, 43(5): 1867-1874. DOI: 10.13334/j.0258-8013.pcsee.212863

前馈修正的循环流化床机组脱硝系统多模型预测控制研究

Research on Multi-model Predictive Control of Denitrification System of CFB Unit Based on Feedforward Modification

  • 摘要: 双碳政策的深入推进对燃煤机组负荷灵活调峰能力提出了更高要求,然而机组负荷大范围变化时会造成烟气NOx浓度的大幅度波动,提升了NOx超低排放控制的难度。针对大范围变负荷工况下难以快速、精准调控喷氨量的难题,以某循环流化床机组联合脱硝系统为研究对象,建立关键参数前馈修正与多模型预测控制耦合的控制策略,以炉膛出口烟气温度为依据划分工况子模型,根据阶跃扰动试验及改进粒子群算法对各子模型进行参数辨识,并通过隶属度加权方法建立多模型控制器。工程应用结果表明,前馈修正的多模型预测控制方法在平稳负荷工况时波动范围达到±5.8mg/m3,变负荷工况时为±8.1mg/m3,标准差分别为2.10和2.89mg/m3,应用结果证明了该控制方法的有效性。

     

    Abstract: The carbon-neutral policy puts forward higher requirement for the load peak shaving capacity of coal-fired power plants. However, the NOx concentration in the flue gas will fluctuate greatly while the load of the unit changes in a large range, which makes it more difficult to control ultra-low NOx emission. Aiming at the problem that it is difficult to quickly and accurately control the spray amount of ammonia under large-scale variable load conditions, this paper took the combined denitrification system of a circulating fluidized bed power plant as the research object, and established a control strategy that coupled key parameter feedforward correction and multi-model predictive control. Using the furnace outlet flue gas temperature as the basis to divide the working condition sub-models, the parameters of each sub-model were identified according to the step disturbance tests and the improved particle swarm optimization. Finally, the multi-model controller was established through the degree of membership weighted method. Engineering application result shows that, the feedforward modified multi-model predictive control method has a fluctuation range of ±5.8mg/m3 under steady load conditions, and it is ±8.1mg/m3 under variable load conditions. The standard deviations are 2.10mg/m3 and 2.89mg/m3 respectively. The application result proves the effectiveness of this control method.

     

/

返回文章
返回