程礼临, 臧海祥, 卫志农, 孙国强. 考虑多光谱卫星遥感的区域级超短期光伏功率预测[J]. 中国电机工程学报, 2022, 42(20): 7451-7464. DOI: 10.13334/j.0258-8013.pcsee.212843
引用本文: 程礼临, 臧海祥, 卫志农, 孙国强. 考虑多光谱卫星遥感的区域级超短期光伏功率预测[J]. 中国电机工程学报, 2022, 42(20): 7451-7464. DOI: 10.13334/j.0258-8013.pcsee.212843
CHENG Lilin, ZANG Haixiang, WEI Zhinong, SUN Guoqiang. Ultra-short-term Forecasting of Regional Photovoltaic Power Generation Considering Multispectral Satellite Remote Sensing Data[J]. Proceedings of the CSEE, 2022, 42(20): 7451-7464. DOI: 10.13334/j.0258-8013.pcsee.212843
Citation: CHENG Lilin, ZANG Haixiang, WEI Zhinong, SUN Guoqiang. Ultra-short-term Forecasting of Regional Photovoltaic Power Generation Considering Multispectral Satellite Remote Sensing Data[J]. Proceedings of the CSEE, 2022, 42(20): 7451-7464. DOI: 10.13334/j.0258-8013.pcsee.212843

考虑多光谱卫星遥感的区域级超短期光伏功率预测

Ultra-short-term Forecasting of Regional Photovoltaic Power Generation Considering Multispectral Satellite Remote Sensing Data

  • 摘要: 建设含高比例新能源的新型电力系统是实现国家“双碳”战略目标的重要途径,而分布广泛的光伏发电将在其中占据较大比重。由于光伏出力的随机性,未来的高比例新能源电网需具备更强的区域协调互动能力,更依赖准确可靠的区域级预测技术。相比于单站址预测,区域级光伏预测需要掌握大范围地区的云运动轨迹,分析不同电站位置的气象差异,并尽可能避免对区域内所有电站逐个重复建模。因此,该文基于卫星遥感数据,提出针对区域级光伏上采样值的超短期预测方法。该方法包含多光谱图像融合、图像预测和双层生成式采样光伏预测,在能够充分利用多光谱卫星遥感图像的同时,基于生成式模型降低了图像预测误差对光伏出力预测的影响。通过对公开的欧洲气象卫星及比利时省级光伏数据进行预测仿真,结果表明,该文方法能够有效提升提前1.5h及以上时间尺度的超短期光伏预测精度,可以满足区域间电网的实时调度需求。

     

    Abstract: It is vital to achieve carbon emission peak and carbon neutrality in China by building new power systems with high renewable energy penetration. Photovoltaic (PV) power will occupy a high proportion due to its broadly distributed nature. Because of the PV randomness, highly integrated renewable energy power grids will require strong abilities of area coordination and interaction, depending on accurate regional predictions. Compared to single forecast, regional forecast should track cloud motion within large areas and study weather variations among PV power sites. It should also avoid repeated modeling for each power plant. Thus, the ultra-short-term forecast method for regional up-scaling PV power was proposed based on satellite remote sensing data. It contains multispectral image fusion, image prediction and two-level generative PV forecasting. The method can take full merits of multispectral satellite images, and can reduce the impacts on PV power predictions caused by image forecast errors. Based on open cases from European weather satellite and Belgium provincial PV regions, it can be proved that the method increases the accuracy under horizons of 1.5 hours and above, meeting requirements of real-time dispatch between regional power grids.

     

/

返回文章
返回