任明, 夏昌杰, 陈荣发, 李信哲, 董明, 王思云. 局部放电多光谱比值特征分析方法[J]. 中国电机工程学报, 2023, 43(2): 809-818. DOI: 10.13334/j.0258-8013.pcsee.212079
引用本文: 任明, 夏昌杰, 陈荣发, 李信哲, 董明, 王思云. 局部放电多光谱比值特征分析方法[J]. 中国电机工程学报, 2023, 43(2): 809-818. DOI: 10.13334/j.0258-8013.pcsee.212079
REN Ming, XIA Changjie, CHEN Rongfa, LI Xinzhe, DONG Ming, WANG Siyun. Multispectral Ratio Characteristics Analysis of Partial Discharge[J]. Proceedings of the CSEE, 2023, 43(2): 809-818. DOI: 10.13334/j.0258-8013.pcsee.212079
Citation: REN Ming, XIA Changjie, CHEN Rongfa, LI Xinzhe, DONG Ming, WANG Siyun. Multispectral Ratio Characteristics Analysis of Partial Discharge[J]. Proceedings of the CSEE, 2023, 43(2): 809-818. DOI: 10.13334/j.0258-8013.pcsee.212079

局部放电多光谱比值特征分析方法

Multispectral Ratio Characteristics Analysis of Partial Discharge

  • 摘要: 局部放电光谱蕴含放电类型和放电能量等信息,通过对多个光谱波段的放电光脉冲进行同步检测,可为放电状态的精准判断提供新的可能。该文首先结合微型固态传感器工作特性和局部放电光谱分布,设计拥有7个独立光谱通道的单光子级多光谱局部放电同步检测系统;在此基础上,通过3种典型缺陷的局部放电试验,提出3种多光谱比值特征,并分析其随放电发展过程的演化规律;最后,采用k-means聚类算法和深度神经网络算法提出基于多光谱比值特征的局部放电模式识别模型。结果表明,3种典型缺陷下局部放电多光谱比值特征具有指纹性,在不依赖传统相位统计图谱(phase-resolved partial discharge,PRPD)特征的情况下,多光谱比值特征分析方法对放电类型的模式识别准确度达到90%以上。该方法提供了一种新的不依赖于工频电压相位的局部放电诊断方法,可为直流系统的放电诊断和电压相位缺失下的交流系统放电诊断提供一定参考。

     

    Abstract: Partial discharge (PD) spectrum contains the discharge information e.g., discharge type and discharge energy, which provides a new possibility for accurate judgment of discharge state through synchronously monitoring of multispectral light pulses. In this paper, a single-photon-level multispectral PD synchronous detection system with seven independent detection bands is designed by combining with the working characteristics of the miniature solid state sensor and the PD spectral distribution. On this basis, three multispectral ratio characteristics and their evolution laws with the discharge development under three typical discharges are introduced. Finally, k-means clustering algorithm and deep neural networks (DNN) are applied to establish PD pattern recognition models based on the multispectral ratio characteristics respectively. The results show that the multispectral ratio characteristics of each PD have fingerprint characteristics, and they perform over 90% accuracy in PD pattern recognition without relying on traditional phase-resolved partial discharge (PRPD) characteristics. Multispectral ratio characteristics analysis performs a new PD diagnosis method independent of power frequency voltage phase, which provides the reference for PD diagnosis of DC system as well as AC system with voltage phase loss.

     

/

返回文章
返回