张鹏, 齐波, 刘娟, 鲁丽萍, 鞠登峰, 李成榕. 电力变压器油中溶解气体数据的分布特征参数快速计算方法[J]. 中国电机工程学报, 2022, 42(5): 2001-2011. DOI: 10.13334/j.0258-8013.pcsee.211687
引用本文: 张鹏, 齐波, 刘娟, 鲁丽萍, 鞠登峰, 李成榕. 电力变压器油中溶解气体数据的分布特征参数快速计算方法[J]. 中国电机工程学报, 2022, 42(5): 2001-2011. DOI: 10.13334/j.0258-8013.pcsee.211687
ZHANG Peng, QI Bo, LIU Juan, LU Liping, JU Dengfeng, LI Chengrong. Fast Calculation Method for Distribution Characteristic Parameters of Dissolved Gas Data in Power Transformer Oil[J]. Proceedings of the CSEE, 2022, 42(5): 2001-2011. DOI: 10.13334/j.0258-8013.pcsee.211687
Citation: ZHANG Peng, QI Bo, LIU Juan, LU Liping, JU Dengfeng, LI Chengrong. Fast Calculation Method for Distribution Characteristic Parameters of Dissolved Gas Data in Power Transformer Oil[J]. Proceedings of the CSEE, 2022, 42(5): 2001-2011. DOI: 10.13334/j.0258-8013.pcsee.211687

电力变压器油中溶解气体数据的分布特征参数快速计算方法

Fast Calculation Method for Distribution Characteristic Parameters of Dissolved Gas Data in Power Transformer Oil

  • 摘要: 为变压器建立差异化分布模型可实现对其运行状态的个性化评价,而广泛使用的在线监测装置使得数据量快速增长,给传统的分布模型构建带来挑战,在参数求取过程中出现计算中断、迭代不收敛等问题。为解决上述问题,该文提出油中溶解气体数据的分布特征参数快速计算方法。首先,对参数求取过程中出现计算异常的原因进行分析,根据百万级油中溶解气体数据的特征提出了基于分段最小二乘估计法(segmented least squares estimation,SLSM)的迭代初始计算方法,并基于计算精度约束给出最优分段数选择方法。之后,利用极大似然估计法(max likelihood estimation,MLE)对模型参数进行多次迭达计算获得最终的分布模型参数。现场实例验证结果表明:所提计算方法不仅可以解决分布模型特征参数计算过程中的各种异常情况,还可以提高计算速度,且计算稳定性优于传统方法,适用于处理现场百万级的油中溶解气体数据。提出的分布特征参数快速计算方法克服了传统方法在面对海量数据时的局限,为基于大数据分析的变压器智能运维提供了支撑。

     

    Abstract: Establishing a differentiated distribution model for a transformer can achieve a personalized evaluation of its operating status. However, the widely used online monitoring device has caused a rapid increase in the amount of data, which brings challenges to the construction of traditional distribution models. Problems such as computational interruptions and non-convergence of iterations occur in the parameter acquisition process. A fast calculation method for distribution characteristic parameters of dissolved gas data was proposed in this paper to fill this gap. Firstly, the reason for the abnormal calculation in the parameter acquisition process was analyzed. According to the massive dissolved gas data characteristics, an iterative initial calculation method based on the segmented least squares estimation method was proposed. Moreover, the optimal segment number selection method was proposed based on the calculation accuracy constraints. Verification test over real case shows that the proposed calculation method can not only solve abnormal situations in the parameter acquisition process of the distribution model, but also increase the calculation speed, and the calculation stability is better than traditional methods, which is suitable for processing millions of dissolved gas data in oil in the field. The proposed fast calculation method of distribution characteristic parameters proposed overcomes the limitations of traditional methods in the face of massive data and provides support for intelligent transformer operation and maintenance based on big data analysis.

     

/

返回文章
返回